The Annals of Statistics

Distribution free goodness-of-fit tests for linear processes

Miguel A. Delgado, Javier Hidalgo, and Carlos Velasco

Full-text: Open access

Abstract

This article proposes a class of goodness-of-fit tests for the autocorrelation function of a time series process, including those exhibiting long-range dependence. Test statistics for composite hypotheses are functionals of a (approximated) martingale transformation of the Bartlett Tp-process with estimated parameters, which converges in distribution to the standard Brownian motion under the null hypothesis. We discuss tests of different natures such as omnibus, directional and Portmanteau-type tests. A Monte Carlo study illustrates the performance of the different tests in practice.

Article information

Source
Ann. Statist., Volume 33, Number 6 (2005), 2568-2609.

Dates
First available in Project Euclid: 17 February 2006

Permanent link to this document
https://projecteuclid.org/euclid.aos/1140191667

Digital Object Identifier
doi:10.1214/009053605000000606

Mathematical Reviews number (MathSciNet)
MR2253096

Zentralblatt MATH identifier
1084.62038

Subjects
Primary: 62G10: Hypothesis testing 62M10: Time series, auto-correlation, regression, etc. [See also 91B84]
Secondary: 62F17 62M15: Spectral analysis

Keywords
Nonparametric model checking spectral distribution linear processes martingale decomposition local alternatives omnibus smooth and directional tests long-range alternatives

Citation

Delgado, Miguel A.; Hidalgo, Javier; Velasco, Carlos. Distribution free goodness-of-fit tests for linear processes. Ann. Statist. 33 (2005), no. 6, 2568--2609. doi:10.1214/009053605000000606. https://projecteuclid.org/euclid.aos/1140191667


Export citation

References

  • Aki, S. (1986). Some test statistics based on the martingale term of the empirical distribution function. Ann. Inst. Statist. Math. 38 1--21.
  • Anderson, T. W. (1997). Goodness-of-fit tests for autoregressive processes. J. Time Ser. Anal. 18 321--339.
  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Bloomfield, P. (1973). An exponential model for the spectrum of a scalar time series. Biometrika 60 217--226.
  • Box, G. E. P. and Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Amer. Statist. Assoc. 65 1509--1526.
  • Brillinger, D. R. (1981). Time Series, Data Analysis and Theory, 2nd ed. Holden-Day, San Francisco.
  • Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods, 2nd ed. Springer, New York.
  • Brown, R. L., Durbin, J. and Evans, J. M. (1975). Techniques for testing constancy of regression relationships over time (with discussion). J. Roy. Statist. Soc. Ser. B 37 149--192.
  • Chen, H. and Romano J. P. (1999). Bootstrap-assisted goodness-of-fit tests in the frequency domain. J. Time Ser. Anal. 20 619--654.
  • Dahlhaus, R. (1985). On the asymptotic distribution of Bartlett's $U_p$-statistic. J. Time Ser. Anal. 6 213--227.
  • Delgado, M. A. and Hidalgo, J. (2000). Bootstrap goodness-of-fit test for linear processes. Preprint, Universidad Carlos III de Madrid.
  • Durbin, J., Knott, M. and Taylor, C. C. (1975). Components of Cramér--von Mises statistics. II. J. Roy. Statist. Soc. Ser. B 37 216--237.
  • Eubank, R. L. and LaRiccia, V. N. (1992). Asymptotic comparison of Cramér--von Mises and nonparametric function estimation techniques for testing goodness-of-fit. Ann. Statist. 20 2071--2086.
  • Giraitis, L., Hidalgo, J. and Robinson, P. M. (2001). Gaussian estimation of parametric spectral density with unknown pole. Ann. Statist. 29 987--1023.
  • Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle's estimate. Probab. Theory Related Fields 86 87--104.
  • Grenander, U. (1950). Stochastic processes and statistical inference. Ark. Mat. 1 195--277.
  • Grenander, U. (1981). Abstract Inference. Wiley, New York.
  • Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis of Stationary Time Series. Wiley, New York.
  • Hainz, G. and Dahlhaus, R. (2000). Spectral domain bootstrap tests for stationary time series. Preprint.
  • Hannan, E. J. (1973). The asymptotic theory of linear time-series models. J. Appl. Probability 10 130--145.
  • Hong, Y. (1996). Consistent testing for serial correlation of unknown form. Econometrica 64 837--864.
  • Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing. Water Resources Research 20 1898--1908.
  • Hosoya, Y. (1997). A limit theory for long-range dependence and statistical inference on related models. Ann. Statist. 25 105--137.
  • Kac, M. and Siegert, A. J. F. (1947). An explicit representation of a stationary Gaussian process Ann. Math. Statist. 18 438--442.
  • Khmaladze, E. V. (1981). A martingale approach in the theory of goodness-of-fit tests. Theory Probab. Appl. 26 240--257.
  • Khmaladze, E. V. and Koul, H. (2004). Martingale transforms goodness-of-fit tests in regression models. Ann. Statist. 32 995--1034.
  • Klüppelberg, C. and Mikosch, T. (1996). The integrated periodogram for stable processes. Ann. Statist. 24 1855--1879.
  • Koul, H. and Stute, W. (1998). Regression model fitting with long memory errors. J. Statist. Plann. Inference 71 35--56.
  • Koul, H. and Stute, W. (1999). Nonparametric model checks for time series. Ann. Statist. 27 204--236.
  • Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika 65 297--303.
  • Neyman, J. (1937). ``Smooth'' test for goodness of fit. Skand. Aktuarietidskr. 20 150--199.
  • Nikabadze, A. and Stute, W. (1997). Model checks under random censorship. Statist. Probab. Lett. 32 249--259.
  • Paparoditis, E. (2000). Spectral density based goodness-of-fit tests for time series models. Scand. J. Statist. 27 143--176.
  • Prewitt, K. (1998). Goodness-of-fit test in parametric time series models. J. Time Ser. Anal. 19 549--574.
  • Robinson, P. M. (1994). Time series with strong dependence. In Advances in Econometrics: Sixth World Congress 1 (C. A. Sims, ed.) 47--95. Cambridge Univ. Press.
  • Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence. Ann. Statist. 23 1048--1072.
  • Robinson, P. M. (1995). Gaussian semiparametric estimation of long-range dependence. Ann. Statist. 23 1630--1661.
  • Schoenfeld, D. A. (1977). Asymptotic properties of tests based on linear combinations of the orthogonal components of the Cramér--von Mises statistic. Ann. Statist. 5 1017--1026.
  • Sen, P. K. (1982). Invariance principles for recursive residuals. Ann. Statist. 10 307--312.
  • Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
  • Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25 613--641.
  • Stute, W., Thies, S. and Zhu, L. (1998). Model checks for regression: An innovation process approach. Ann. Statist. 26 1916--1934.
  • Stute, W. and Zhu, L. (2002). Model checks for generalized linear models. Scand. J. Statist. 29 535--545.
  • Velasco, C. (1999). Non-stationary log-periodogram regression J. Econometrics 91 325--371.
  • Velasco, C. and Robinson, P. M. (2000). Whittle pseudo-maximum likelihood estimation for nonstationary time series. J. Amer. Statist. Assoc. 95 1229--1243.
  • Velilla, S. (1994). A goodness-of-fit test for autoregressive-moving-average models based on the standardized sample spectral distribution of the residuals J. Time Ser. Anal. 15 637--647.