The Annals of Statistics

Asymptotic normality of the Lk-error of the Grenander estimator

Vladimir N. Kulikov and Hendrik P. Lopuhaä

Full-text: Open access

Abstract

We investigate the limit behavior of the Lk-distance between a decreasing density f and its nonparametric maximum likelihood estimator n for k1. Due to the inconsistency of n at zero, the case k=2.5 turns out to be a kind of transition point. We extend asymptotic normality of the L1-distance to the Lk-distance for 1k<2.5, and obtain the analogous limiting result for a modification of the Lk-distance for k2.5. Since the L1-distance is the area between f and n, which is also the area between the inverse g of f and the more tractable inverse Un of n, the problem can be reduced immediately to deriving asymptotic normality of the L1-distance between Un and g. Although we lose this easy correspondence for k>1, we show that the Lk-distance between f and n is asymptotically equivalent to the Lk-distance between Un and g.

Article information

Source
Ann. Statist., Volume 33, Number 5 (2005), 2228-2255.

Dates
First available in Project Euclid: 25 November 2005

Permanent link to this document
https://projecteuclid.org/euclid.aos/1132936562

Digital Object Identifier
doi:10.1214/009053605000000462

Mathematical Reviews number (MathSciNet)
MR2211085

Zentralblatt MATH identifier
1086.62063

Subjects
Primary: 62E20: Asymptotic distribution theory 62G07: Density estimation
Secondary: 62G20: Asymptotic properties

Keywords
Brownian motion with quadratic drift central limit theorem concave majorant isotonic estimation L_k norm monotone density

Citation

Kulikov, Vladimir N.; Lopuhaä, Hendrik P. Asymptotic normality of the L k -error of the Grenander estimator. Ann. Statist. 33 (2005), no. 5, 2228--2255. doi:10.1214/009053605000000462. https://projecteuclid.org/euclid.aos/1132936562


Export citation

References

  • Durot, C. (2002). Sharp asymptotics for isotonic regression. Probab. Theory Related Fields 122 222--240.
  • Grenander, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr. 39 125--153.
  • Groeneboom, P. (1985). Estimating a monotone density. In Proc. Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. Olshen, eds.) 2 539--555. Wadsworth, Belmont, CA.
  • Groeneboom, P., Hooghiemstra, G. and Lopuhaä, H. P. (1999). Asymptotic normality of the $L_1$-error of the Grenander estimator. Ann. Statist. 27 1316--1347.
  • Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. Birkhäuser, Basel.
  • Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191--219.
  • Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent rv's, and the sample df. I. Z. Wahrsch. Verw. Gebiete 32 111--131.
  • Kulikov, V. N. and Lopuhaä, H. P. (2004). Testing for a monotone density using $L_k$-distances between the empirical distribution function and its concave majorant. Report 2004-028, Eurandom. Available at www.eurandom.nl/reports/reports%202004/028VKreport.pdf.
  • Kulikov, V. N. and Lopuhaä, H. P. (2006). The behavior of the NPMLE of a decreasing density near the boundaries of the support. Ann. Statist. 34(2). To appear.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhyā Ser. A 31 23--36.
  • Sun, J. and Woodroofe, M. (1996). Adaptive smoothing for a penalized NPMLE of a non-increasing density. J. Statist. Plann. Inference 52 143--159.
  • Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of $f(0+)$ when $f$ is nonincreasing. Statist. Sinica 3 501--515.