The Annals of Statistics

Depth weighted scatter estimators

Yijun Zuo and Hengjian Cui

Full-text: Open access

Abstract

General depth weighted scatter estimators are introduced and investigated. For general depth functions, we find out that these affine equivariant scatter estimators are Fisher consistent and unbiased for a wide range of multivariate distributions, and show that the sample scatter estimators are strong and $\sqrt{n}$-consistent and asymptotically normal, and the influence functions of the estimators exist and are bounded in general. We then concentrate on a specific case of the general depth weighted scatter estimators, the projection depth weighted scatter estimators, which include as a special case the well-known Stahel–Donoho scatter estimator whose limiting distribution has long been open until this paper. Large sample behavior, including consistency and asymptotic normality, and efficiency and finite sample behavior, including breakdown point and relative efficiency of the sample projection depth weighted scatter estimators, are thoroughly investigated. The influence function and the maximum bias of the projection depth weighted scatter estimators are derived and examined. Unlike typical high-breakdown competitors, the projection depth weighted scatter estimators can integrate high breakdown point and high efficiency while enjoying a bounded-influence function and a moderate maximum bias curve. Comparisons with leading estimators on asymptotic relative efficiency and gross error sensitivity reveal that the projection depth weighted scatter estimators behave very well overall and, consequently, represent very favorable choices of affine equivariant multivariate scatter estimators.

Article information

Source
Ann. Statist., Volume 33, Number 1 (2005), 381-413.

Dates
First available in Project Euclid: 8 April 2005

Permanent link to this document
https://projecteuclid.org/euclid.aos/1112967710

Digital Object Identifier
doi:10.1214/009053604000000922

Mathematical Reviews number (MathSciNet)
MR2157807

Zentralblatt MATH identifier
1065.62048

Subjects
Primary: 62F35: Robustness and adaptive procedures 62H12: Estimation
Secondary: 62E20: Asymptotic distribution theory 62F12: Asymptotic properties of estimators

Keywords
Scatter estimator depth projection depth consistency asymptotic normality influence function maximum bias breakdown point efficiency robustness

Citation

Zuo, Yijun; Cui, Hengjian. Depth weighted scatter estimators. Ann. Statist. 33 (2005), no. 1, 381--413. doi:10.1214/009053604000000922. https://projecteuclid.org/euclid.aos/1112967710


Export citation

References

  • Chen, Z. and Tyler, D. E. (2002). The influence function and maximum bias of Tukey's median. Ann. Statist. \bf30 1737–1759.
  • Cui, H. and Tian, Y. (1994). Estimation of the projection absolute median deviation and its application. J. Systems Sci. Math. Sci. \bf14 63–72. (In Chinese.)
  • Davies, P. L. (1987). Asymptotic behavior of $S$-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. \bf15 1269–1292.
  • Donoho, D. L. (1982). Breakdown properties of multivariate location estimators. Ph.D. qualifying paper, Dept. Statistics, Harvard Univ.
  • Donoho, D. L. and Huber, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich L. Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges, Jr., eds.) 157–184. Wadsworth, Belmont, CA.
  • Dümbgen, L. (1992). Limit theorem for the simplicial depth. Statist. Probab. Lett. \bf14 119–128.
  • Eaton, M. L. (1981). On the projections of isotropic distributions. Ann. Statist. \bf9 391–400.
  • Gather, U. and Hilker, T. (1997). A note on Tyler's modification of the MAD for the Stahel–Donoho estimator. Ann. Statist. \bf25 2024–2026.
  • Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based On Influence Functions. Wiley, New York.
  • He, X. and Simpson, D. G. (1993). Lower bounds for contamination bias: Globally minimax versus locally linear estimation. Ann. Statist. \bf21 314–337.
  • Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. \bf35 73–101.
  • Kent, J. T. and Tyler, D. E. (1996). Constrained $M$-estimation multivariate location and scatter. Ann. Statist. 24 1346–1370.
  • Liu, R. Y. (1990). On a notion of data depth based on random simplices. Ann. Statist. \bf18 405–414.
  • Liu, R. Y. (1992). Data depth and multivariate rank tests. In $L_1$-Statistical Analysis and Related Methods (Y. Dodge, ed.) 279–294. North-Holland, Amsterdam.
  • Liu, R. Y., Parelius, J. M. and Singh, K. (1999). Multivariate analysis by data depth: Descriptive statistics, graphics and inference (with discussion). Ann. Statist. \bf27 783–858.
  • Lopuhaä, H. P. (1989). On the relation between $S$-estimators and $M$-estimators of multivariate location and covariance. Ann. Statist. \bf17 1662–1683.
  • Lopuhaä, H. P. (1999). Asymptotics of reweighted estimators of multivariate location and scatter. Ann. Statist. \bf27 1638–1665.
  • Maronna, R. A. (1976). Robust $M$-estimators of multivariate location and scatter. Ann. Statist. \bf4 51–67.
  • Maronna, R. A. and Yohai, V. J. (1995). The behavior of the Stahel–Donoho robust multivariate estimator. J. Amer. Statist. Assoc. \bf90 330–341.
  • Martin, R. D., Yohai, V. J. and Zamar, R. H. (1989). Min–max bias robust regression. Ann. Statist. \bf17 1608–1630.
  • Massé, J.-C. (2004). Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean. Bernoulli 10 397–419.
  • Muirhead, R. J. (1982). Aspects of Multivariate Statistical Thoeory. Wiley, New York.
  • Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.
  • Romanazzi, M. (2001). Influence function of halfspace depth. J. Multivariate Anal. \bf77 138–161.
  • Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In Mathematical Statistics and Applications (W. Grossmann, G. Pflug, I. Vincze and W. Wertz, eds.) 283–297. Reidel, Dordrecht.
  • Stahel, W. A. (1981). Breakdown of covariance estimators. Research Report 31, Fachgruppe für Statistik, ETH, Zürich.
  • Tukey, J. W. (1975). Mathematics and the picturing of data. In Proc. International Congress of Mathematicians Vancouver 1974 \bf2 523–531. Canadian Math. Congress, Montreal.
  • Tyler, D. E. (1982). Radial estimates and the test for sphericity. Biometrika \bf69 429–436.
  • Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika \bf70 411–420.
  • Tyler, D. E. (1994). Finite sample breakdown points of projection based multivariate location and scatter statistics. Ann. Statist. \bf22 1024–1044.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer, New York.
  • Zuo, Y. (2003). Projection-based depth functions and associated medians. Ann. Statist. \bf31 1460–1490.
  • Zuo, Y. (2004). Robustness of weighted $L_p$-depth and $L_p$-median. Allg. Stat. Arch. 88 215–234.
  • Zuo, Y., Cui, H. and He, X. (2004). On the Stahel–Donoho estimator and depth-weighted means of multivariate data. Ann. Statist. \bf32 167–188.
  • Zuo, Y., Cui, H. and Young, D. (2004). Influence function and maximum bias of projection depth based estimators. Ann. Statist. \bf32 189–218.
  • Zuo, Y. and Serfling, R. (2000a). General notions of statistical depth function. Ann. Statist. \bf28 461–482.
  • Zuo, Y. and Serfling, R. (2000b). Structural properties and convergence results for contours of sample statistical depth functions. Ann. Statist. \bf28 483–499.