The Annals of Statistics

Robbins, empirical Bayes and microarrays

Bradley Efron

Full-text: Open access


Empirical Bayes was Herbert Robbins' most influential contribution to statistical theory. It is also an idea of great practical potential. That potential is realized in the analysis of microarrays, a new biogenetic technology for the simultaneous measurement of thousands of gene expression levels.

Article information

Ann. Statist., Volume 31, Number 2 (2003), 366-378.

First available in Project Euclid: 22 April 2003

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62F10: Point estimation

False discovery rate missing species $q$-value Stein estimation simultaneous inference


Efron, Bradley. Robbins, empirical Bayes and microarrays. Ann. Statist. 31 (2003), no. 2, 366--378. doi:10.1214/aos/1051027871.

Export citation


  • BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57 289-300.
  • BENJAMINI, Y. and YEKUTIELI, Y. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165-1188.
  • EFRON, B. and MORRIS, C. (1973). Stein's estimation rule and its competitors-an empirical Bay es approach. J. Amer. Statist. Assoc. 68 117-130.
  • EFRON, B. and MORRIS, C. (1975). Data analysis using Stein's estimator and its generalizations. J. Amer. Statist. Assoc. 70 311-319.
  • EFRON, B., STOREY, J. and TIBSHIRANI, R. (2001). Microarray s, empirical Bay es methods, and false discovery rates. Technical report, Stanford Univ. Available online from tibs/research.html.
  • EFRON, B. and THISTED, R. (1976). Estimating the number of unseen species: How many words did Shakespeare know? Biometrika 63 435-447.
  • EFRON, B. and THISTED, R. (1987). Did Shakespeare write a newly-discovered poem? Biometrika 74 445-455.
  • EFRON, B., TIBSHIRANI, R., STOREY, J. and TUSHER, V. (2001). Empirical Bay es analysis of a microarray experiment. J. Amer. Statist. Assoc. 96 1151-1160.
  • FISHER, R., CORBET, A. and WILLIAMS, C. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12 42-58.
  • GENOVESE, C. and WASSERMAN, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 499-517.
  • GOOD, I. and TOULMIN, G. (1956). The number of new species, and the increase in population coverage, when a sample is increased. Biometrika 43 45-63.
  • HANNAN, J. and ROBBINS, H. (1955). Asy mptotic solutions of the compound decision problem for two completely specified distributions. Ann. Math. Statist. 26 37-51.
  • NEWTON, M., KENDZIORSKI, C., RICHMOND, C., BLATTNER, F. and TSUI, K. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. J. Computational Biology 8 37-52.
  • ROBBINS, H. (1951). Asy mptotically subminimax solutions of compound statistical decision problems. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 1 131-148. Univ. California Press, Berkeley.
  • ROBBINS, H. (1956). An empirical Bay es approach to statistics. Proc. Third Berkeley Sy mp. Math. Statist. Probab. 1 157-163. Univ. California Press, Berkeley.
  • ROBBINS, H. (1964). The empirical Bay es approach to statistical decision problems. Ann. Math. Statist. 35 1-20.
  • STOREY, J. (2001). The false discovery rate: A Bayesian interpretation and the q-value. Technical report, Stanford Univ. Available online from storey.
  • TUSHER, V., TIBSHIRANI, R. and CHU, G. (2001). Significance analysis of microarray s applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98 5116-5121.