The Annals of Statistics

Kernel density estimation for linear processes

Jan Mielniczuk and Wei Biao Wu

Full-text: Open access


In this paper we provide a detailed characterization of the asymptotic behavior of kernel density estimators for one-sided linear processes. The conjecture that asymptotic normality for the kernel density estimator holds under short-range dependence is proved under minimal assumptions on bandwidths. We also depict the dichotomous and trichotomous phenomena for various choices of bandwidths when the process is long-range dependent.

Article information

Ann. Statist., Volume 30, Number 5 (2002), 1441-1459.

First available in Project Euclid: 28 October 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62F05: Asymptotic properties of tests 60F17: Functional limit theorems; invariance principles
Secondary: 60G35: Signal detection and filtering [See also 62M20, 93E10, 93E11, 94Axx]

Long- and short-range dependence kernel density estimators linear process martingale central limit theorem


Wu, Wei Biao; Mielniczuk, Jan. Kernel density estimation for linear processes. Ann. Statist. 30 (2002), no. 5, 1441--1459. doi:10.1214/aos/1035844982.

Export citation


  • AVRAM, F. and TAQQU, M. S. (1987). Noncentral limit theorems and Appell poly nomials. Ann. Probab. 15 767-775.
  • BERAN, J. (1994). Statistics for Long-Memory Processes. Chapman and Hall, New York.
  • BOSQ, D. (1996). Nonparametric Statistics for Stochastic Processes. Estimation and Prediction. Lecture Notes in Statist. 110. Springer, New York.
  • CARBON, M. and TRAN, L. T. (1996). On histograms of linear processes. J. Statist. Plann. Inference 53 403-419.
  • CASTELLANA, J. V. and LEADBETTER, M. R. (1986). On smoothed probability density estimation. Stochast. Process. Appl. 21 179-193.
  • CHANDA, K. C. (1983). Density estimation for linear processes. Ann. Inst. Statist. Math. 35 439- 446.
  • CHANDA, K. C. (1995). Corrigendum to density estimation for linear processes. Unpublished note.
  • CHOW, Y. S. and TEICHER, H. (1988). Probability Theory, 2nd ed. Springer, New York.
  • COULON-PRIEUR, C. and DOUKHAN, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statist. Probab. Lett. 47 61-68.
  • CSÖRG O, S. and MIELNICZUK, J. (1995). Density estimation under long-range dependence. Ann. Statist. 23 990-999.
  • DOUKHAN, P. (1994). Mixing: Properties and Examples. Springer, New York.
  • GIRAITIS, L., KOUL, H. L. and SURGAILIS, D. (1996). Asy mptotic normality of regression estimators with long memory errors. Statist. Probab. Lett. 29 317-335.
  • GIRAITIS, L. and SURGAILIS, D. (1999). Central limit theorem for the empirical process of a linear sequence with long memory. J. Statist. Plann. Inference 80 81-93.
  • GORODETSKII, V. V. (1977). On the strong mixing property for linear sequences. Theory Probab. Appl. 22 411-412.
  • HALL, P. and HART, J. (1990). Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Related Fields 87 253-274.
  • HALLIN, M. and TRAN, L. T. (1996). Kernel density estimation for linear processes: Asy mptotic normality and optimal bandwidth derivation. Ann. Inst. Statist. Math. 48 430-448.
  • HO, H. C. (1996). On central and non-central limit theorems in density estimation for sequences of long-range dependence. Stochastic Process. Appl. 63 153-174.
  • HO, H. C. and HSING, T. (1996). On the asy mptotic expansion of the empirical process of longmemory moving averages. Ann. Statist. 24 992-1024.
  • HO, H. C. and HSING, T. (1997). Limit theorems for functionals of moving averages. Ann. Probab. 25 1636-1669.
  • HONDA, T. (2000). Nonparametric density estimation for a long-range dependent linear process. Ann. Inst. Statist. Math. 52 599-611.
  • PARZEN, E. (1962). On the estimation of a probability density and the mode. Ann. Math. Statist. 33 1965-1976.
  • PHAM, T. D. and TRAN, L. T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303.
  • RESNICK, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.
  • RIO, E. (1995). About the Lindeberg method for strongly mixing sequences. ESAIM Probab. Statist. 1 35-61.
  • ROBINSON, P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal. 4 185-207.
  • ROSENBLATT, M. (1956). Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27 832-837.
  • ROSENBLATT, M. (1970). Density estimates and Markov sequences. In Nonparametric Techniques in Statistical Inference (M. L. Puri, ed.) 199-213. Cambridge Univ. Press.
  • SILVERMAN, B. W. (1986). Density Estimation for Statistics and Data Analy sis. Chapman and Hall, London.
  • SURGAILIS, D. (1982). Zones of attraction of self-similar multiple integrals. Lithuanian J. Math. 22 185-201.
  • TAQQU, M. S. (1979). Convergence of integrated process of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53-83.
  • TRAN, L. T. (1992). Kernel density estimation for linear processes. Stochastic Process. Appl. 26 281-296.
  • WITHERS, C. S. (1981). Conditions for linear process to be strongly mixing. Z. Wahrsch. Verw. Gebiete 57 477-480.
  • WOODROOFE, M. (1970). Discussion on Rosenblatt's paper. In Nonparametric Techniques in Statistical Inference (M. L. Puri, ed.) 199-213. Cambridge Univ. Press, London.