The Annals of Statistics

Uniform consistency of generalized kernel estimators of quantile density

C. Cheng

Full-text: Open access

Abstract

Various smoothing methods for quantile density estimation are unified into a generalized kernel smoothing. Based on a stochastic upper bound of the derivatives sequence for a sequence of smoothed Brownian bridges, uniform in-probability consistency of generalized kernel quantile density estimators on any closed subinterval of the open unit interval is derived.

Article information

Source
Ann. Statist., Volume 23, Number 6 (1995), 2285-2291.

Dates
First available in Project Euclid: 15 October 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1034713657

Digital Object Identifier
doi:10.1214/aos/1034713657

Mathematical Reviews number (MathSciNet)
MR1389875

Zentralblatt MATH identifier
0853.62031

Subjects
Primary: 62G07: Density estimation 62G20: Asymptotic properties
Secondary: 62G05: Estimation 62G30: Order statistics; empirical distribution functions

Keywords
Quantile density function approximation smoothing kernel

Citation

Cheng, C. Uniform consistency of generalized kernel estimators of quantile density. Ann. Statist. 23 (1995), no. 6, 2285--2291. doi:10.1214/aos/1034713657. https://projecteuclid.org/euclid.aos/1034713657


Export citation

References

  • BILLINGSLEY, P. 1986. Probability and Measure, 2nd ed. Wiley, New York. Z.
  • BLOCH, D. A. and GASTWIRTH, J. L. 1968. On a simple estimate of the reciprocal of the density function. Ann. Math. Statist. 39 1083 1085. Z.
  • BOFINGER, E. 1975. Estimation of a density function using order statistics. Austral. J. Statist. 17 1 7. Z.
  • CHENG, C. 1995. The Bernstein poly nomial estimator of a smooth quantile function. Statist. Probab. Lett. 24 321 330. Z.
  • CSORGO, M., DEHEUVELS, P. and HORVATH, L. 1991. Estimating the quantile-density function. ¨ ´ Z. In Nonparametric Functional Estimation and Related Topics G. Roussas, ed. 213 223. Kluwer Academic, Boston. Z.
  • CSORGO, M. and HORVATH, L. 1989. On confidence bands for the quantile function of a ¨ ´ continuous distribution function. Colloq. Math. Soc. Janos Boly ai 57 95 106. ´ Z.
  • CSORGO, M. and REVESZ, P. 1978. Strong approximations of the quantile process. Ann. Statist. ¨ ´ ´ 6 882 894. Z.
  • CSORGO, M. and REVESZ, P. 1981. Strong Approximations in Probability and Statistics. Aca¨ ´ ´ demic Press, New York. Z.
  • FALK, M. 1986. On the estimation of the quantile density function. Statist. Probab. Lett. 4 69 73.Z.
  • GAWRONSKI, W. 1985. Strong laws for density estimators of Bernstein ty pe. Period. Math. Hungar. 16 23 43. Z.
  • KAIGH, W. D. and CHENG, C. 1991. Subsampling quantile estimators and uniformity criteria. Comm. Statist. Theory Methods 20 539 560. Z.
  • LORENTZ, G. G. 1986. Bernstein Poly nomials. Chelsea, New York. Z. Z.
  • PARZEN, E. 1979. Nonparametric statistical data modeling with comments. J. Amer. Statist. Assoc. 74 105 131. Z. Z.
  • SCHOENBERG, I. J. 1965. On spline functions. In Inequalities O. Shisha, ed. 255 291. Academic Press, New York. Z.
  • SIDDIQUI, M. M. 1960. Distribution of quantiles in samples from a bivariate population. Journal of Research of the National Bureau of Standards, Section B 64 145 150. Z.
  • STADTMULLER, U. 1986. Asy mptotic properties of nonparametric curve estimators. Period. ¨ Math. Hungar. 12 83 104. Z.
  • STADTMULLER, U. 1988. Kernel approximations of a Wiener process. Period. Math. Hungar. 19 ¨ 79 90.Z.
  • VITALE, R. A. 1975. A Bernstein poly nomial approach to density estimation. In Statistical Z. Inference and Related Topics M. L. Puri, ed. 87 99. Academic Press, New York. Z.
  • XIANG, X. 1994. A law of the logarithm for kernel quantile density estimators. Ann. Probab. 22 1078 1091.
  • BALTIMORE, MARy LAND 21218