## The Annals of Statistics

### On the asymptotic expansion of the empirical process of long-memory moving averages

#### Abstract

Let $X_n = \Sigma_{i=1}^{\infty} a_i \varepsilon_{n-i}$, where the $\varepsilon_i$ are iid with mean 0 finite fourth moment and the $a_i$ are regularly varying with index $-\beta$ where $\beta \epsilon (1/2, 1)$ so that ${X_n}$ has long-range dependence. This covers an important class of the fractional ARIMA process. For $r \geq 0$, let $Y_{N, r} = \sum_{n=1}^N \sum_{1\leq j_1 < \dots < j_r} \Pi_{s=1}^r a_{j_s}, Y_{N, 0} = N, \sigma_{N, r}^2 = \Var(Y_{N, r})$ and $F^{(r)} =$ the rth derivative of the distribution function of $X_n$. The $Y_{N, r}$ are uncorrelated and are stochastically decreasing in r. For any positive integer $p < (2\beta - 1)^{-1}$, it is shown under mild regularity conditions that, with probability 1, $$\sum_{n=1}^N I(X_n \leq x) = \sum_{r=0}^p (-1)^r F^{(r)} (x) Y_{N,r} + o(N^{-\lambda} \sigma_{N,p})\\ \text{uniformly for all x \epsilon\Re \forall 0 < \lambda < (\beta - 1/2) \wedge (1/2 - p(\beta - 1/2))}.$$ This generalizes a host of existing results and provides the vehicle for a number of statistical applications.

#### Article information

Source
Ann. Statist., Volume 24, Number 3 (1996), 992-1024.

Dates
First available in Project Euclid: 20 September 2002

https://projecteuclid.org/euclid.aos/1032526953

Digital Object Identifier
doi:10.1214/aos/1032526953

Mathematical Reviews number (MathSciNet)
MR1401834

Zentralblatt MATH identifier
0862.60026

#### Citation

Ho, Hwai-Chung; Hsing, Tailen. On the asymptotic expansion of the empirical process of long-memory moving averages. Ann. Statist. 24 (1996), no. 3, 992--1024. doi:10.1214/aos/1032526953. https://projecteuclid.org/euclid.aos/1032526953

#### References

• AVRAM, F. and TAQQU, M. S. 1987. Noncentral limit theorems and Appell poly nomials. Ann. Probab. 15 767 775. Z.
• BAHADUR, R. R. 1966. A note on quantiles in large samples. Ann. Math. Statist. 37 577 580. Z.
• BERAN, J. 1991. M-estimator of location for data with slowly decaying serial correlations. J. Amer. Statist. Assoc. 86 704 708. Z.
• BERAN, J. 1992. Statistical methods for data with long-range dependence. Statist. Sci. 7 404 420. Z.
• BERAN, J. and GHOSH, S. 1991. Slowly decaying correlation, testing normality, nuisance parameters. J. Amer. Statist. Assoc. 86 785 791. Z.
• BICKEL, P. and ROSENBLATT, M. 1973. On the global measure of the deviation of density function estimates. Ann. Statist. 1 1071 1095. Z.
• BILLINGSLEY, P. 1968. Convergence of Probability Measures. Wiley, New York. Z.
• BROCKWELL, P. J. and DAVIS, R. A. 1987. Time Series: Theory and Methods. Springer, New York. Z.
• CHANDA, K. C. and RUy MGAART, F. H. 1990. General linear processes: a property of the empirical process applied to density and mode estimation. J. Time Ser. Anal. 11 185 199. Z.
• DAVy DOV, Y. A. 1970. The invariance principle for stationary processes. Theory Probab. Appl. 15 487 498. Z.
• DEHLING, H. and TAQQU, M. S. 1989. The empirical processes of some long-range dependent sequences with an application to U-statistics. Ann. Statist. 17 1767 1783. Z.
• DOBRUSHIN, R. L. and MAJOR, P. 1979. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27 52. Z.
• FELLER, W. 1971. An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York.
• GRANGER, C. W. and JOy EUX, R. 1980. An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1 15 29. Z.
• HALL, P. and HART, J. D. 1990. Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Related Fields 87 253 274. Z.
• HESSE, C. H. 1990a. Rates of convergence for the empirical distribution function and the empirical characteristic function of a broad class of linear processes. J. Multivariate Anal. 35 186 202. Z.
• HESSE, C. H. 1990b. A Bahadur-ty pe representation for empirical quantiles of a large class of stationary, possibly infinite-variance, linear processes. Ann. Statist. 18 1188 1202. Z.
• HOSKING, J. R. M. 1981. Fractional differencing. Biometrika 68 165 176. Z.
• HURST, H. E. 1951. Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116 770 808. Z.
• KUNSCH, H. 1986. Statistical aspects of self-similar processes. Proceedings of the First World ¨ Congress of the Bernoulli Society 1 67 74. Z.
• LAI, T. L. and STOUT, W. 1980. Limit theorems for sums of dependent random variables. Z. Wahrsch. Verw. Gebiete 51 1 14. Z.
• MAJOR, P. 1981. Multiple Wiener Ito Integrals: With Applications to Limit Theorems. Lecture Notes in Math. 849. Springer, New York. Z.
• MANDELBROT, B. B. and TAQQU, M. S. 1979. Robust R S analysis of long run serial correlation. Proceedings of the 42nd Session of the ISI 2 69 100. Z.
• POLLARD, D. 1984. Convergence of Stochastic Processes. Springer, New York. Z.
• ROBINSON, P. M. 1994. Time series with strong dependence. Sixth World Congress of the Econometric Society 47 96. Cambridge Univ. Press. Z.
• ROSENBLATT, M. 1961. Independence and dependence. Proc. Fourth Berkeley Sy mp. Math. Statist. Probab. 2 431 443. Univ. California Press, Berkeley. Z.
• SEN, P. K. 1972. On the Bahadur representation of sample quantiles for sequences of -mixing random variables. J. Multivariate Anal. 2 77 95. Z.
• SURGAILIS, D. 1983. Zones of attraction of self-similar multiple integrals. Lithuanian Math. J. 22 327 340. Z.
• TAQQU, M. S. 1975. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287 302. Z.
• TAQQU, M. S. 1979. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53 83. Z.
• TAQQU, M. S. 1985. A bibliographic guide to self-similar processes and long-range dependence. Z. In Dependence in Probability and Statistics E. Eberlein and M. S. Taqqu, eds. 137 165. Birkhauser, Boston. ¨
• TAIPEI, TAIWAN 115 COLLEGE STATION, TEXAS 77843-3143 REPUBLIC OF CHINA E-MAIL: thsing@stat.tamu.edu