The Annals of Statistics

Modeling through group invariance: an interesting example with potential applications

Heng Li

Full-text: Open access

Abstract

A particular linear group symmetry model, called the dyadic symmetry model, is studied in some detail. Statistical procedures analogous to (multivariate) analysis of variance are introduced. This model may be suitable for various kinds of data collected on pairs of sampling units. Examples include (complete) diallel cross experiments in genetics and social relations analysis in psychology, for which ad hoc methods of analysis have been developed independently in those disciplines.

Our approach is based entirely on formal data structure following the principle of group symmetry, and hence its applicability is not restricted to any specific substantive areas. This paper illustrates the benefits that can be derived from the exploration of mathematical meanings in the development of statistical methods.

Article information

Source
Ann. Statist., Volume 30, Number 4 (2002), 1069-1080.

Dates
First available in Project Euclid: 10 September 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1031689017

Digital Object Identifier
doi:10.1214/aos/1031689017

Mathematical Reviews number (MathSciNet)
MR1926168

Zentralblatt MATH identifier
1101.62341

Subjects
Primary: 62H05: Characterization and structure theory 62J10: Analysis of variance and covariance 62A01: Foundations and philosophical topics 62E15: Exact distribution theory 20C99: None of the above, but in this section 62P15: Applications to psychology 62P10: Applications to biology and medical sciences

Keywords
Diallel cross dyadic symmetry model exchangeability group symmetry model linear group symmetry model patterned covariance social relations model

Citation

Li, Heng. Modeling through group invariance: an interesting example with potential applications. Ann. Statist. 30 (2002), no. 4, 1069--1080. doi:10.1214/aos/1031689017. https://projecteuclid.org/euclid.aos/1031689017


Export citation

References

  • ANDERSSON, S. A. (1975). Invariant normal models. Ann. Statist. 3 132-154.
  • ANDERSSON, S. A. (1990). The lattice structure of orthogonal linear-models and orthogonal variance component models. Scand. J. Statist. 17 287-319.
  • ANDERSSON, S. A. and MADSEN, J. (1998). Sy mmetry and lattice conditional independence in a multivariate normal distribution. Ann. Statist. 26 525-572.
  • BECHTEL, G. G. (1967). The analysis of variance and pairwise scaling. Psy chometrika 32 47-65.
  • BECHTEL, G. G. (1971). A dual scaling analysis for paired compositions. Psy chometrika 36 135- 154.
  • BOX, G. E. P. and TIAO, G. C. (1973). Bayesian Inference in Statistical Analy sis. Addison-Wesley, Reading, MA.
  • CAPPÉ, O. and ROBERT, C. P. (2000). Markov chain Monte Carlo: 10 years and still running! J. Amer. Statist. Assoc. 95 1282-1286.
  • COCKERHAM, C. C. and WEIR, B. S. (1977). Quadratic analyses of reciprocal crosses. Biometrics 33 187-204.
  • DAVID, H. A. (1988). The Method of Paired Comparisons, 2nd ed. Griffin, London.
  • DAWID, A. P. (1988). Sy mmetry models and hy potheses for structured data lay outs (with discussion). J. Roy. Statist. Soc. Ser. B 50 1-34.
  • DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1-38.
  • KENNY, D. A. (1994). Interpersonal Perception. Guilford, New York.
  • LEV, J. and KINDER, E. (1957). New analysis of variance formulas for treating data from mutually paired subjects. Psy chometrika 22 1-15.
  • LI, H. (2000). Comment on "Invariance and factorial models," by P. McCullagh. J. Roy. Statist. Soc. Ser. B 62 250-251.
  • LIU, C. and RUBIN, D. B. (1994). The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81 633-648.
  • LIU, C., RUBIN, D. B. and WU, Y. N. (1998). Parameter expansion to accelerate EM: The PX-EM algorithm. Biometrika 85 755-770.
  • MCCULLAGH, P. (2000). Invariance and factorial models (with discussion). J. Roy. Statist. Soc. Ser. B 62 209-256.
  • MENG, X.-L. and RUBIN, D. B. (1991). Using the EM algorithm to obtain asy mptotic variancecovariance matrices: The SEM algorithm. J. Amer. Statist. Assoc. 86 899-909.
  • MENG, X.-L. and RUBIN, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80 267-278.
  • MENG, X.-L. and VAN Dy K, D. A. (1997). The EM algorithm-an old folk song sung to a fast new tune (with discussion). J. Roy. Statist. Soc. Ser. B 59 511-567.
  • MENG, X.-L. and VAN Dy K, D. A. (1998). Fast EM-ty pe implementations for mixed-effects models. J. Roy. Statist. Soc. Ser. B 59 559-578.
  • OAKES, D. (1999). Direct calculation of the information matrix via the EM algorithm. J. Roy. Statist. Soc. Ser. B 61 479-482.
  • PERLMAN, M. D. (1987). Group sy mmetry models. Comment on "A review of multivariate analysis," by M. J. Schervish. Statist. Sci. 2 421-425.
  • RAO, P. S. R. S. (1997). Variance Components Estimation. Chapman and Hall, London.
  • SEARLE, S. R., CASELLA, G. and MCCULLOCH, C. E. (1992). Variance Components. Wiley, New York.
  • VAN Dy K, D. A., MENG X.-L. and RUBIN, D. B. (1995). Maximum likelihood estimation via the ECM algorithm: computing the asy mptotic variance. Statist. Sinica 5 55-75.
  • WARNER, R. M., KENNY, D. A. and STOTO, M. (1979). A new round robin analysis of variance for social interaction data. J. Personality Soc. Psy ch. 37 1742-1757.
  • ROCHESTER, NEW YORK 14642 E-MAIL: liheng@bst.rochester.edu