The Annals of Statistics

Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift

Valentine Genon-Catalot, Catherine Laredo, and Michael Nussbaum

Full-text: Open access

Abstract

We consider a diffusion model of small variance type with positive drift density varying in a nonparametric set. We investigate Gaussian and Poisson approximations to this model in the sense of asymptotic equivalence of experiments. It is shown that observation of the diffusion process until its first hitting time of level one is a natural model for the purpose of inference on the drift density. The diffusion model can be discretized by the collection of level crossing times for a uniform grid of levels. The random time increments are asymptotically sufficient and obey a nonparametric regression model with independent data. This decoupling is then used to establish asymptotic equivalence to Gaussian signal-in-white-noise and Poisson intensity models on the unit interval, and also to an i.i.d. model when the diffusion drift function $f$ is a probability density. As an application, we find the exact asymptotic minimax constant for estimating the diffusion drift density with sup-norm loss.

Article information

Source
Ann. Statist., Volume 30, Number 3 (2002), 731-753.

Dates
First available in Project Euclid: 6 August 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1028674840

Digital Object Identifier
doi:10.1214/aos/1028674840

Mathematical Reviews number (MathSciNet)
MR1922540

Zentralblatt MATH identifier
1029.62071

Subjects
Primary: 62B15: Theory of statistical experiments
Secondary: 62M05: Markov processes: estimation 62G07: Density estimation

Keywords
Nonparametric experiments deficiency distance diffusion process discretization inverse Gaussian regression signal in white noise Poisson intensity asymptotic minimax constant

Citation

Genon-Catalot, Valentine; Laredo, Catherine; Nussbaum, Michael. Asymptotic equivalence of estimating a Poisson intensity and a positive diffusion drift. Ann. Statist. 30 (2002), no. 3, 731--753. doi:10.1214/aos/1028674840. https://projecteuclid.org/euclid.aos/1028674840


Export citation

References

  • BROWN, L. D. and LOW, M. G. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398.
  • CHHIKARA, R. S. and FOLKS, J. L. (1989). The Inverse Gaussian Distribution. Dekker, New York.
  • DE LA PEÑA, V. and GINÉ, E. (1999). Decoupling: From Dependence to Independence. Springer, New York.
  • DONOHO, D. (1994). Asy mptotic minimax risk for sup-norm loss: Solution via optimal recovery. Probab. Theory Related Fields 99 145-170.
  • FREIDLIN, M. I. and WENTZELL, A. D. (1998). Random Perturbations of Dy namical Sy stems, 2nd ed. Springer, New York.
  • GENON-CATALOT, V. (1990). Maximum contrast estimation for diffusion processes from discrete observations. Statistics 21 99-116.
  • GENON-CATALOT, V. and LAREDO, C. (1987). Limit theorems for the first hitting times process of a diffusion and statistical applications. Scand. J. Statist. 14 143-160.
  • GRAMA, I. and NUSSBAUM, M. (1998). Asy mptotic equivalence for nonparametric generalized linear models. Probab. Theory Related Fields 111 167-214.
  • JACOD, J. and SHIRy AEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, New York.
  • KARATZAS, I. and SHREVE, S. E. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York.
  • KARLIN, S. and TAy LOR, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, Orlando, FL.
  • KOROSTELEV, A. P. (1993). Exact asy mptotically minimax estimator for nonparametric regression in uniform norm. Theory Probab. Appl. 38 737-743.
  • KOROSTELEV, A. P. and NUSSBAUM, M. (1999). The asy mptotic minimax constant for sup-norm loss in nonparametric density estimation. Bernoulli 5 1099-1118.
  • KUSHNER, H. J. and DUPUIS, P. G. (1992). Numerical Methods for Stochastic Control Problems in Continuous Time. Springer, New York.
  • KUTOy ANTS, YU. (1985). On nonparametric estimation of trend coefficients in a diffusion process. In Statistics and Control of Stochastic Processes (N. V. Kry lov, R. S. Liptser and A. A. Novikov, eds.) 230-250. Optimization Software, New York.
  • KUTOy ANTS, YU. (1994). Identification of Dy namical Sy stems with Small Noise. Kluwer, Dordrecht.
  • KUTOy ANTS, YU. (1997). Efficiency of the empirical distribution for ergodic diffusion. Bernoulli 3 445-456.
  • LAREDO, C. (1990). A sufficient condition for asy mptotic sufficiency of incomplete observations of a diffusion process. Ann. Statist. 18 1158-1171.
  • LE CAM, L. (1986). Asy mptotic Methods in Statistical Decision Theory. Springer, New York.
  • LEONOV, S. L. (1997). On the solution of an optimal recovery problem and its applications in nonparametric regression. Math. Methods Statist. 6 476-490.
  • LEPSKII, O. and SPOKOINY, V. (1997). Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 2512-2546.
  • MILSTEIN, G. N. (1998). On the mean-square approximation of a diffusion process in a bounded domain. Stochastics Stochastics Rep. 64 211-233.
  • MILSTEIN, G. and NUSSBAUM, M. (1998). Diffusion approximation for nonparametric autoregression. Probab. Theory Related Fields 112 535-543.
  • MILSTEIN, G. N. and TRETy AKOV, M. V. (1999). Simulation of a space-time bounded diffusion. Ann. Appl. Probab. 9 732-779.
  • MUSIELA, M. and RUTKOWSKI, M. (1997). Martingale Methods in Financial Modelling. Springer, New York.
  • NUSSBAUM, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430.
  • PINSKER, M. S. (1980). Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120-133.
  • REISS, R.-D. (1993). A Course on Point Processes. Springer, New York.
  • ITHACA, NEW YORK 14853-4201 E-MAIL: nussbaum@math.cornell.edu