The Annals of Statistics

Lucien Le Cam 1924-2000

Grace L. Yang

Full-text: Open access

Article information

Source
Ann. Statist., Volume 30, Number 3 (2002), 617-630.

Dates
First available in Project Euclid: 6 August 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1028674835

Digital Object Identifier
doi:10.1214/aos/1028674835

Mathematical Reviews number (MathSciNet)
MR1922536

Zentralblatt MATH identifier
1103.01319

Subjects
Primary: 01A70: Biographies, obituaries, personalia, bibliographies

Citation

Yang, Grace L. Lucien Le Cam 1924-2000. Ann. Statist. 30 (2002), no. 3, 617--630. doi:10.1214/aos/1028674835. https://projecteuclid.org/euclid.aos/1028674835


Export citation

References

  • ALBERS, D. J., ALEXANDERSON, G. L. and REID, C. (eds.) (1990). More Mathematical People. Harcourt Brace Jovanovich, Boston.
  • ARAK, T. V. and ZAITSEV, A. YU. (1988). Uniform Limit Theorems for Sums of Independent Random Variables. Amer. Math. Soc., Providence, RI.
  • BARBOUR, A. D., HOLST, L. and JANSON, S. (1992). Poisson Approximation. Clarendon Press, Oxford.
  • BASAWA, I. V. and PRAKASA RAO, B. L. S. (1980). Statistical Inference for Stochastic Processes. Academic Press, New York.
  • BASAWA, I. V. and SCOTT, D. J. (1983). Asy mptotic Optimal Inference for Nonergodic Models. Lecture Notes in Statist. 17. Springer, New York.
  • BERNSTEIN, S. (1946). Theory of Probability (in Russian). GTTI, Moscow.
  • BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore.
  • BLACKWELL, D. (1951). Comparison of experiments. Proc. Second Berkeley Sy mp. Math. Statist. Probab. 93-102. Univ. California Press, Berkeley.
  • BLACKWELL, D. (1953). Equivalent comparisons of experiments. Ann. Math. Statist. 24 265-272.
  • BOURBAKI, N. (1969). Eléments de Mathématiques. Intégration, Chapitre IX. Hermann, Paris.
  • BRILLINGER, D. and YANG, G. L. (2001). Lucien Le Cam, statisticien extraordinaire. Stats Spring 3-6.
  • DONOHO, D. L. (1997). Renormalizing experiments for nonlinear functionals. In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E. Torgersen and G. Yang, eds.) 167-181. Springer, New York.
  • DONOHO, D. L. and LIU, R. C. (1991). Geometrizing rates of convergence. II, III. Ann. Statist. 19 633-667, 668-701.
  • GREENWOOD, P. E. and SHIRy AYEV, A. N. (1985). Contiguity and the Statistical Invariance Principle. Gordon and Breach, New York.
  • GUPTA, V. K. and WAy MIRE, E. (1993). A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteorology 32 251-267.
  • HÁJEK, J. and SIDÁK, Z. (1967). Theory of Rank Tests. Academic Press, New York.
  • IBRAGIMOV, I. A. and HAS'MINSKII, R. Z. (1981). Statistical Estimation: Asy mptotic Theory. Springer, New York.
  • JANSSEN, A., MILBRODT, H. and STRASSER, H. (1985). Infinitely Divisible Statistical Experiments. Lecture Notes in Statist. 27. Springer, Berlin.
  • KRAFT, C. H. (1955). Some conditions for consistency and uniform consistency of statistical procedures. Univ. California Publ. Statist. 2 125-142.
  • LEHMANN, E. L. (1997). Le Cam at Berkeley. In Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics (D. Pollard, E. Torgersen and G. Yang, eds.) 297-304. Springer, New York.
  • NEy MAN, J. (1979). C() tests and their use. Sankhy¯a Ser. A 41 1-21.
  • OSSIANDER, M. and WAy MIRE, E. (2000). Statistical estimation for multiplicative cascades. Ann. Statist. 28 1533-1560.
  • POLLARD, D., TORGERSEN, E. and YANG, G. L. (eds.) (1997). Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics. Springer, New York.
  • ROUSSAS, G. G. (1972). Contiguity of Probability Measures: Some Applications in Statistics. Cambridge Univ. Press.
  • SESHADRI, V. (1997). Halphen's laws. In Ency clopedia Statist. Sci. (S. Kotz, C. Read and D. Banks, eds.) updated 1 302-306. Wiley, New York.
  • STRASSER, H. (1985). Mathematical Theory of Statistics: Statistical Experiments and Asy mptotic Theory. de Gruy ter, Berlin.
  • TORGERSEN, E. N. (1970). Comparison of experiments when the parameter space is finite. Z. Wahrsch. Verw. Gebiete 16 219-249.
  • TORGERSEN, E. N. (1991). Comparison of Statistical Experiments. Cambridge Univ. Press.
  • VAN DER VAART, A. W. (1998). Asy mptotic Statistics. Cambridge Univ. Press.
  • VAN DER VAART, A. W. (2002). The statistical work of Lucien Le Cam. Ann. Statist. 30 631-682.
  • VON MISES, R. (1931). Wahrscheinlichkeitsrechnung. Springer, Berlin.
  • WALD, A. (1943). Tests of statistical hy potheses concerning several parameters when the number of observations is large. Trans. Amer. Math. Soc. 54 426-482.
  • WALD, A. (1950). Statistical Decision Functions. Wiley, New York.
  • YANG, G. L. (1999). A conversation with Lucien Le Cam. Statist. Sci. 14 223-241.
  • COLLEGE PARK, MARy LAND 20742-4015 E-MAIL: gly@math.umd.edu