The Annals of Statistics

Minimum $G_2$-aberration for nonregular fractional factorial designs

Lih-Yuan Deng and Boxin Tang

Full-text: Open access

Abstract

Deng and Tang proposed generalized resolution and minimum aberration criteria for comparing and assessing nonregular fractional factorials, of which Plackett–Burman designs are special cases.A relaxed variant of generalized aberration is proposed and studied in this paper.We show that a best design according to this criterion minimizes the contamination of nonnegligible interactions on the estimation of main effects in the order of importance given by the hierarchical assumption.The new criterion is defined through a set of $B$ values, a generalization of word length pattern. We derive some theoretical results that relate the $B$ values of a nonregular fractional factorial and those of its complementary design. Application of this theory to the construction of the best designs according to the new aberration criterion is discussed. The results in this paper generalize those in Tang and Wu, which characterize a minimum aberration (regular) $2^{m-k}$ design through its complementary design.

Article information

Source
Ann. Statist., Volume 27, Number 6 (1999), 1914-1926.

Dates
First available in Project Euclid: 4 April 2002

Permanent link to this document
https://projecteuclid.org/euclid.aos/1017939244

Digital Object Identifier
doi:10.1214/aos/1017939244

Mathematical Reviews number (MathSciNet)
MR1765622

Zentralblatt MATH identifier
0967.62055

Subjects
Primary: 62K15: Factorial designs
Secondary: 62K05: Optimal designs

Keywords
Hadamard matrix orthogonality confounding Plackett-Burman design resolution projection property defining relation word length pattern

Citation

Tang, Boxin; Deng, Lih-Yuan. Minimum $G_2$-aberration for nonregular fractional factorial designs. Ann. Statist. 27 (1999), no. 6, 1914--1926. doi:10.1214/aos/1017939244. https://projecteuclid.org/euclid.aos/1017939244


Export citation

References

  • Box, G. E. P. and Hunter, J. S. (1961). The 2k-p fractional factorial designs. Technometrics 3 311-351; 449-458.
  • Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statistics for Experimenters. Wiley, New York.
  • Box, G. E. P. and Tyssedal, J. (1996). Projective properties ofcertain orthogonal arrays. Biometrika 84 950-955.
  • Chen, H. and Hedayat, A. S. (1996). 2n-m fractional factorial designs with (weak) minimum aberration. Ann. Statist. 24 2536-2548.
  • Chen, J. (1992). Some results on 2n-k fractional factorial designs and search for minimum aberration designs. Ann. Statist. 20 2124-2141.
  • Chen, J. and Wu, C. F. J. (1991). Some results on sn-k fractional factorial designs with minimum aberration or optimal moments. Ann. Statist. 19 1028-1041.
  • Cheng, C. S. (1995). Some projection properties oforthogonal arrays. Ann. Statist. 23 1223-1233.
  • Cheng, C. S., Steinberg, D. M. and Sun, D. X. (1999). Minimum aberration and model robustness for two level fractional factorial designs. J. Roy. Statist. Soc. Ser. B 61 85-93.
  • Deng, L. Y. and Tang, B. (1998). Design selection and classification for Hadamard matrices using generalized minimum aberration criterion. Unpublished manuscript.
  • Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statist. Sinica 9 1071-1082.
  • Franklin, M. F. (1984). Constructing tables ofminimum aberration pn-m designs. Technometrics 26 225-232.
  • Fries, A. and Hunter, W. G. (1980). Minimum aberration 2k-p designs. Technometrics 22 601- 608.
  • Hall, M., Jr. (1961). Hadamard matrix oforder 16. Jet Propulsion Laboratory Research Summary 1 21-26.
  • Hall, M., Jr. (1965). Hadamard matrix oforder 20. Jet Propulsion Laboratory Technical Report 1 32-76.
  • Hamada, M. and Wu, C. F. J. (1992). Analysis ofdesigned experiments with complex aliasing. J. Quality Technology 24 130-137.
  • Kimura, H. (1989). New Hadamard matrix oforder 24. Graphs Combin. 5 235-242.
  • Lin, D. K. J. (1993). A new class ofsupersaturated designs. Technometrics 35 28-31.
  • Lin, D. K. J. and Draper, N. R. (1992). Projection properties ofPlackett and Burman designs. Technometrics 34 423-428.
  • Mukerjee, R. and Wu, C. F. J. (1997). Minimum aberration designs for mixed factorials in terms oftheir complementary sets. Preprint.
  • Paley, R. E. A. C. (1933). On orthogonal matrices. J. Math. and Phys. 12 311-320.
  • Plackett, R. L. and Burman, J. P. (1946). The design ofoptimum multi-factorial experiments. Biometrika 33 305-325.
  • Spence, E. (1995). Classification ofHadamard matrices oforder 24 and 28. Discrete Math. 140 185-243.
  • Suen, C-Y., Chen, H. and Wu, C. F. J. (1997). Some identities on qn-m designs with application to minimum aberrations. Ann. Statist. 25 1176-1188.
  • Tang, B. and Wu, C. F. J. (1996). Characterization ofminimum aberration 2n-k designs in terms oftheir complementary designs. Ann. Statist. 24 2549-2559.
  • Tang, B. and Wu, C. F. J. (1997). A method for constructing supersaturated designs and its E s2 optimality. Canad. J. Statist. 25 191-201.
  • Vijayan, K. (1976). Hadamard matrices and submatrices. J. Austral. Math. Soc. Ser. 22 A 469- 475.
  • Wang, J. C. and Wu, C. F. J. (1995). A hidden projection property ofPlackett-Burman and related designs. Statist. Sinica 5 235-250.
  • Webb, S. R. (1964). Characterization ofnonorthogonal incomplete factorial designs. Appendix B ofARL 65-116, Part I. Areospace Research Laboratories, United States Air Force, Wright-Patterson Air Force Base.
  • Williamson, J. (1944). Hadamard's determinant theorem and the sum offour squares. Duke Math. J. 11 65-81.
  • Wu, C. F. J. (1993). Construction ofsupersaturated designs through partially aliased interactions. Biometrika 80 661-669.