The Annals of Statistics

Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs

Kani Chen, Inchi Hu, and Zhiliang Ying

Full-text: Open access


Strong consistency for maximum quasi-likelihood estimators of regression parameters in generalized linear regression models is studied. Results parallel to the elegant work of Lai, Robbins and Wei and Lai and Wei on least squares estimation under both fixed and adaptive designs are obtained. Let $y_1,\dots, y_n$ and $x_1,\dots, x_n$ be the observed responses and their corresponding design points ($p \times 1$ vectors), respectively. For fixed designs, it is shown that if the minimum eigenvalue of $\Sigma x_i x^\prime_i$ goes to infinity, then the maximum quasi-likelihood estimator for the regression parameter vector is strongly consistent. For adaptive designs, it is shown that a sufficient condition for strong consistency to hold is that the ratio of the minimum eigenvalue of $\Sigma x_i \x^\prime_i$ to the logarithm of the maximum eigenvalues goes to infinity. Use of the results for the adaptive design case in quantal response experiments is also discussed.

Article information

Ann. Statist., Volume 27, Number 4 (1999), 1155-1163.

First available in Project Euclid: 4 April 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62F12: Asymptotic properties of estimators
Secondary: 62J05: Linear regression

Generalized linear models maximum quasi-likelihood estimator exponential family strong consistency martingale difference fixed design adaptive design


Chen, Kani; Hu, Inchi; Ying, Zhiliang. Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs. Ann. Statist. 27 (1999), no. 4, 1155--1163. doi:10.1214/aos/1017938919.

Export citation


  • ANDERSEN, E. B. 1980. Discrete Statistical Models with Social Science Applications. NorthHolland, Amsterdam. Z.
  • ANDERSON, T. W. and TAYLOR, J. B. 1979. Strong consistency of least squares estimates in dynamic models. Ann. Statist. 7 484 489.
  • ASTROM, K. L. and WITTENMARK, B. 1973. On self-tuning regulators. Automatica 9 185 199. Z.
  • BOX, G. E. P. and JENKINS, G. 1970. Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco. Z.
  • CHOW, Y. S. and TEICHER, H. 1988. Probability Theory, 2nd ed. Springer, New York.
  • COCHRAN, W. G. and DAVIS, M. 1965. The Robbins Monro method for estimating the median lethal dose. J. Roy. Statist. Soc. Ser. B 27 28 44. Z.
  • DIXON, W. J. and MOOD, A. M. 1948. A method for obtaining and analyzing sensitivity data. J. Amer. Statist. Assoc. 43 109 127. Z.
  • DUGUNDJI, J. 1966. Topology. Allyn and Bacon, Boston. Z.
  • FAHRMEIR, L. and KAUFMANN 1985. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13 342 368. Z.
  • FINNEY, D. J. 1978. Statistical Methods in Biological Assay. Griffin, London. Z.
  • HABERMAN, S. J. 1977. Maximum likelihood estimates in exponential response models. Ann. Statist. 5 815 841. Z.
  • LAI, T. L. and ROBBINS, H. 1979. Adaptive design and stochastic approximation. Ann. Statist. 7 1196 1221. Z.
  • LAI, T. L., ROBBINS, H. and WEI, C. Z. 1979. Strong consistency of least squares estimates in multiple regression II. J. Multivariate Anal. 9 343 361. Z.
  • LAI, T. L. and WEI, C. Z. 1982. Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10 154 166. Z.
  • LIANG, K.-Y. and ZEGER, S. L. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73 13 22. Z.
  • LORD, M. F. 1971a. Tailored testing, an application of stochastic approximation. J. Amer. Statist. Assoc. 66 707 711. Z.
  • LORD, M. F. 1971b. Robbins Monro procedures for tailored testing. Educational and Psychological Measurement 31 3 31.Z.
  • MCCULLAGH, P. and NELDER, J. A. 1989. Generalized Linear Models, 2nd ed. Chapman and Hall, London. Z.
  • MOORE, J. B. 1978. On strong consistency of least squares identification algorithms. Automatica 14 505 509. Z.
  • NELDER, J. A. and WEDDERBURN, R. W. M. 1972. Generalized linear models. J. Roy. Statist. Soc. Ser. A 135 370 384. Z.
  • NORDBERG, L. 1980. Asymptotic normality of maximum likelihood estimators based on independent, unequally distributed observations in exponential family models. Scand. J. Statist. 7 27 32. Z.
  • ROBBINS, H. and MONRO, S. 1951. A stochastic approximation method. Ann. Math. Statist. 22 400 407. Z.
  • WEDDERBURN, R. W. M. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss Newton method. Biometrika 61 439 447. Z. Z.
  • WETHERILL, G. B. 1963. Sequential estimation of quantal response curves with discussion. J. Roy. Statist. Soc. Ser. B 25 1 48. Z.
  • WU, C. F. J. 1985. Efficient sequential designs with binary data. J. Amer. Statist. Assoc. 80 974 984. Z.
  • WU, C. F. J. 1986. Maximum likelihood recursion and stochastic approximation in sequential Z. designs. In Adaptive Statistical Procedures and Related Topics J. Van Ryzin, ed.
  • IMS, Hayward, CA.