The Annals of Statistics

On the determination of optimal designs for an interference model

J. Kunert and R. J. Martin

Full-text: Open access


This paper generalizes Kushner’s method for finding optimal repeated measurements designs to find optimal designs under an interference model. The model we assume is for a one-dimensional layout without guard plots and with different left and right neighbor effects. The resulting optimal designs may need many blocks or may not even exist as a finite design. The results give lower bounds for optimality criteria on finite designs and the design structure can be used to suggest efficient small designs.

Article information

Ann. Statist., Volume 28, Number 6 (2000), 1728-1742.

First available in Project Euclid: 12 March 2002

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62K05: Optimal designs 62K10: Block designs
Secondary: 62P10: Applications to biology and medical sciences

Interference model neighbor effect optimal design universal optimality


Kunert, J.; Martin, R. J. On the determination of optimal designs for an interference model. Ann. Statist. 28 (2000), no. 6, 1728--1742. doi:10.1214/aos/1015957478.

Export citation


  • Besag, J. and Kempton, R. A. (1986). Statistical analysis offield experiments using neighbouring plots. Biometrics 42 231-251.
  • David, O. and Kempton, R. A. (1996). Designs for interference. Biometrics 52 224-233.
  • David, O., Monod, H. and Philippeau, G. (1998). Protocoles exp´erimentaux pour contr oler les effets de voisinage dans les essais vari´etaux. In Actes des XXX emes Journ´ees de Statistique, Volume II: Communications libres 162-164. Ecole Nationale de la Statistique et de l'Analyse de l'Information, Bruz, France.
  • Druilhet, P. (1999). Optimality ofcircular neighbor balanced designs. J. Statist. Plann. Inf. 81 141-152.
  • Gill, P. S. (1993). Design and analysis of field experiments incorporating local and remote effects oftreatments. Biometrical J. 35 343-354.
  • Kiefer, J. (1975). Construction and optimality ofgeneralized Youden designs. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 333-353. North-Holland, Amsterdam.
  • Kunert, J. (1983). Optimal design and refinement ofthe linear model with applications to repeated measurements designs. Ann. Statist. 11 247-257.
  • Kushner, H. B. (1997). Optimal repeated measurements designs: the linear optimality equations. Ann. Statist. 25 2328-2344.
  • Pukelsheim, F. (1993). Optimal Design of Experiments. Wiley, New York. Rao, C. R. and Toutenburg, H. (1995): Linear Models. Least Squares and Alternatives. Springer, New York.