The Annals of Probability

Local law and complete eigenvector delocalization for supercritical Erdős–Rényi graphs

Yukun He, Antti Knowles, and Matteo Marcozzi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove a local law for the adjacency matrix of the Erdős–Rényi graph $G(N,p)$ in the supercritical regime $pN\geq C\log N$ where $G(N,p)$ has with high probability no isolated vertices. In the same regime, we also prove the complete delocalization of the eigenvectors. Both results are false in the complementary subcritical regime. Our result improves the corresponding results from (Ann. Probab. 41 (2013) 2279–2375) by extending them all the way down to the critical scale $pN=O(\log N)$.

A key ingredient of our proof is a new family of multilinear large deviation estimates for sparse random vectors, which carefully balance mixed $\ell^{2}$ and $\ell^{\infty }$ norms of the coefficients with combinatorial factors, allowing us to prove strong enough concentration down to the critical scale $pN=O(\log N)$. These estimates are of independent interest and we expect them to be more generally useful in the analysis of very sparse random matrices.

Article information

Source
Ann. Probab., Volume 47, Number 5 (2019), 3278-3302.

Dates
Received: September 2018
Revised: January 2019
First available in Project Euclid: 22 October 2019

Permanent link to this document
https://projecteuclid.org/euclid.aop/1571731451

Digital Object Identifier
doi:10.1214/19-AOP1339

Mathematical Reviews number (MathSciNet)
MR4021251

Subjects
Primary: 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52) 15B52: Random matrices 05C80: Random graphs [See also 60B20]

Keywords
Erdős–Rényi graph sparse random matrix local law eigenvector delocalization

Citation

He, Yukun; Knowles, Antti; Marcozzi, Matteo. Local law and complete eigenvector delocalization for supercritical Erdős–Rényi graphs. Ann. Probab. 47 (2019), no. 5, 3278--3302. doi:10.1214/19-AOP1339. https://projecteuclid.org/euclid.aop/1571731451


Export citation

References

  • [1] Ajanki, O., Erdős, L. and Krüger, T. Quadratic vector equations on complex upper half-plane. Preprint. Available at arXiv:1506.05095.
  • [2] Ajanki, O. H., Erdős, L. and Krüger, T. (2017). Universality for general Wigner-type matrices. Probab. Theory Related Fields 169 667–727.
  • [3] Bauerschmidt, R., Huang, J. and Yau, H.-T. Local Kesten–McKay law for random regular graphs. Preprint. Available at arXiv:1609.09052.
  • [4] Bauerschmidt, R., Knowles, A. and Yau, H.-T. (2017). Local semicircle law for random regular graphs. Comm. Pure Appl. Math. 70 1898–1960.
  • [5] Benaych-Georges, F., Bordenave, C. and Knowles, A. (2017). Largest eigenvalues of sparse inhomogeneous Erdős–Rényi graphs. Preprint. Available at arXiv:1704.02953.
  • [6] Benaych-Georges, F., Bordenave, C. and Knowles, A. (2017). Spectral radii of sparse random matrices. Preprint. Available at arXiv:1704.02945.
  • [7] Benaych-Georges, F. and Knowles, A. (2017). Local semicircle law for Wigner matrices. In Advanced Topics in Random Matrices. Panor. Synthèses 53 1–90. Soc. Math. France, Paris.
  • [8] Dumitriu, I. and Zhu, Y. (2019). Sparse general Wigner-type matrices: Local law and eigenvector delocalization. J. Math. Phys. 60 023301.
  • [9] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2012). Spectral statistics of Erdős–Rényi graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys. 314 587–640.
  • [10] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2013). Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323 367–416.
  • [11] Erdős, L., Knowles, A., Yau, H.-T. and Yin, J. (2013). Spectral statistics of Erdős–Rényi graphs I: Local semicircle law. Ann. Probab. 41 2279–2375.
  • [12] Erdős, L., Schlein, B. and Yau, H.-T. (2009). Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 641–655.
  • [13] Erdős, L., Schlein, B. and Yau, H.-T. (2009). Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37 815–852.
  • [14] Erdős, L., Yau, H.-T. and Yin, J. (2012). Bulk universality for generalized Wigner matrices. Probab. Theory Related Fields 154 341–407.
  • [15] He, Y. and Knowles, A. (2017). Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Probab. 27 1510–1550.
  • [16] He, Y., Knowles, A. and Rosenthal, R. (2018). Isotropic self-consistent equations for mean-field random matrices. Probab. Theory Related Fields 171 203–249.
  • [17] Huang, J., Landon, B. and Yau, H.-T. (2015). Bulk universality of sparse random matrices. J. Math. Phys. 56 123301.
  • [18] Huang, J., Landon, B. and Yau, H.-T. (2017). Transition from Tracy–Widom to Gaussian fluctuations of extremal eigenvalues of sparse Erdős–Rényi graphs. Preprint. Available at arXiv:1712.03936.
  • [19] Lee, J. O. and Schnelli, K. (2018). Local law and Tracy–Widom limit for sparse random matrices. Probab. Theory Related Fields 171 543–616.
  • [20] Tran, L. V., Vu, V. H. and Wang, K. (2013). Sparse random graphs: Eigenvalues and eigenvectors. Random Structures Algorithms 42 110–134.
  • [21] van der Hofstad, R. (2017). Random Graphs and Complex Networks. Vol. 1. Cambridge Series in Statistical and Probabilistic Mathematics 43. Cambridge Univ. Press, Cambridge.