The Annals of Probability

Thouless–Anderson–Palmer equations for generic $p$-spin glasses

Antonio Auffinger and Aukosh Jagannath

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the Thouless–Anderson–Palmer (TAP) equations for spin glasses on the hypercube. First, using a random, approximately ultrametric decomposition of the hypercube, we decompose the Gibbs measure, $\langle \cdot \rangle_{N}$, into a mixture of conditional laws, $\langle \cdot \rangle_{\alpha,N}$. We show that the TAP equations hold for the spin at any site with respect to $\langle \cdot \rangle_{\alpha,N}$ simultaneously for all $\alpha $. This result holds for generic models provided that the Parisi measure of the model has a jump at the top of its support.

Article information

Source
Ann. Probab., Volume 47, Number 4 (2019), 2230-2256.

Dates
Received: May 2017
Revised: August 2018
First available in Project Euclid: 4 July 2019

Permanent link to this document
https://projecteuclid.org/euclid.aop/1562205708

Digital Object Identifier
doi:10.1214/18-AOP1307

Mathematical Reviews number (MathSciNet)
MR3980920

Subjects
Primary: 82D30: Random media, disordered materials (including liquid crystals and spin glasses) 60G15: Gaussian processes

Keywords
Spin glasses TAP random measures ultrametricity cluster decomposition

Citation

Auffinger, Antonio; Jagannath, Aukosh. Thouless–Anderson–Palmer equations for generic $p$-spin glasses. Ann. Probab. 47 (2019), no. 4, 2230--2256. doi:10.1214/18-AOP1307. https://projecteuclid.org/euclid.aop/1562205708


Export citation

References

  • [1] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York.
  • [2] Arguin, L.-P. and Aizenman, M. (2009). On the structure of quasi-stationary competing particle systems. Ann. Probab. 37 1080–1113.
  • [3] Auffinger, A. and Chen, W.-K. (2015). On properties of Parisi measures. Probab. Theory Related Fields 161 817–850.
  • [4] Auffinger, A. and Chen, W.-K. (2015). The Parisi formula has a unique minimizer. Comm. Math. Phys. 335 1429–1444.
  • [5] Auffinger, A. and Jagannath, A. (2019). On spin distributions for generic $p$-spin models. J. Stat. Phys. 174 316–332.
  • [6] Bolthausen, E. (2014). An iterative construction of solutions of the TAP equations for the Sherrington–Kirkpatrick model. Comm. Math. Phys. 325 333–366.
  • [7] Chatterjee, S. (2010). Spin glasses and Stein’s method. Probab. Theory Related Fields 148 567–600.
  • [8] Jagannath, A. (2017). Approximate ultrametricity for random measures and applications to spin glasses. Comm. Pure Appl. Math. 70 611–664.
  • [9] Panchenko, D. (2010). The Ghirlanda–Guerra identities for mixed $p$-spin model. C. R. Math. Acad. Sci. Paris 348 189–192.
  • [10] Panchenko, D. (2013). The Parisi ultrametricity conjecture. Ann. of Math. (2) 177 383–393.
  • [11] Panchenko, D. (2013). The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York.
  • [12] Panchenko, D. (2015). Hierarchical exchangeability of pure states in mean field spin glass models. Probab. Theory Related Fields 161 619–650.
  • [13] Talagrand, M. (2003). Spin Glasses: A Challenge for Mathematicians: Cavity and Mean Field Models. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 46. Springer, Berlin.
  • [14] Talagrand, M. (2010). Construction of pure states in mean field models for spin glasses. Probab. Theory Related Fields 148 601–643.
  • [15] Thouless, D. J., Anderson, P. W. and Palmer, R. G. (1977). Solution of ‘solvable model of a spin glass’. Philos. Mag. 35 593–601.