The Annals of Probability

Erdős–Feller–Kolmogorov–Petrowsky law of the iterated logarithm for self-normalized martingales: A game-theoretic approach

Takeyuki Sasai, Kenshi Miyabe, and Akimichi Takemura

Full-text: Open access

Abstract

We prove an Erdős–Feller–Kolmogorov–Petrowsky law of the iterated logarithm for self-normalized martingales. Our proof is given in the framework of the game-theoretic probability of Shafer and Vovk. Like many other game-theoretic proofs, our proof is self-contained and explicit.

Article information

Source
Ann. Probab., Volume 47, Number 2 (2019), 1136-1161.

Dates
Received: April 2015
Revised: December 2017
First available in Project Euclid: 26 February 2019

Permanent link to this document
https://projecteuclid.org/euclid.aop/1551171647

Digital Object Identifier
doi:10.1214/18-AOP1281

Mathematical Reviews number (MathSciNet)
MR3916944

Zentralblatt MATH identifier
07053566

Subjects
Primary: 60G42: Martingales with discrete parameter

Keywords
Bayesian strategy constant-proportion betting strategy lower class upper class self-normalized processes

Citation

Sasai, Takeyuki; Miyabe, Kenshi; Takemura, Akimichi. Erdős–Feller–Kolmogorov–Petrowsky law of the iterated logarithm for self-normalized martingales: A game-theoretic approach. Ann. Probab. 47 (2019), no. 2, 1136--1161. doi:10.1214/18-AOP1281. https://projecteuclid.org/euclid.aop/1551171647


Export citation

References

  • [1] Bai, Z. D. (1989). A theorem of Feller revisited. Ann. Probab. 17 385–395.
  • [2] Berkes, I., Hörmann, S. and Weber, M. (2010). Upper-lower class tests for weighted i.i.d. sequences and martingales. J. Theoret. Probab. 23 428–446.
  • [3] Csörgő, M., Szyszkowicz, B. and Wang, Q. (2003). Darling–Erdős theorem for self-normalized sums. Ann. Probab. 31 676–692.
  • [4] de la Peña, V. H., Klass, M. J. and Lai, T. L. (2004). Self-normalized processes: Exponential inequalities, moment bounds and iterated logarithm laws. Ann. Probab. 32 1902–1933.
  • [5] Einmahl, U. and Mason, D. M. (1990). Some results on the almost sure behavior of martingales. In Limit Theorems in Probability and Statistics (Pécs, 1989). Colloquia Mathematica Societatis János Bolyai 57 185–195. North-Holland, Amsterdam.
  • [6] Erdös, P. (1942). On the law of the iterated logarithm. Ann. of Math. (2) 43 419–436.
  • [7] Feller, W. (1943). The general form of the so-called law of the iterated logarithm. Trans. Amer. Math. Soc. 54 373–402.
  • [8] Feller, W. (1946). The law of the iterated logarithm for identically distributed random variables. Ann. of Math. (2) 47 631–638.
  • [9] Griffin, P. and Kuelbs, J. (1991). Some extensions of the LIL via self-normalizations. Ann. Probab. 19 380–395.
  • [10] Jain, N. C., Jogdeo, K. and Stout, W. F. (1975). Upper and lower functions for martingales and mixing processes. Ann. Probab. 3 119–145.
  • [11] Kolmogoroff, A. (1929). Über das Gesetz des iterierten Logarithmus. Math. Ann. 101 126–135.
  • [12] Kumon, M., Takemura, A. and Takeuchi, K. (2008). Capital process and optimality properties of a Bayesian skeptic in coin-tossing games. Stoch. Anal. Appl. 26 1161–1180.
  • [13] Lévy, P. (1937). Théorie de l’Addition des Variables Aléatoires. Gautier-Villars, Paris.
  • [14] Miyabe, K. and Takemura, A. (2012). Convergence of random series and the rate of convergence of the strong law of large numbers in game-theoretic probability. Stochastic Process. Appl. 122 1–30.
  • [15] Miyabe, K. and Takemura, A. (2013). The law of the iterated logarithm in game-theoretic probability with quadratic and stronger hedges. Stochastic Process. Appl. 123 3132–3152.
  • [16] Philipp, W. and Stout, W. (1986). Invariance principles for martingales and sums of independent random variables. Math. Z. 192 253–264.
  • [17] Révész, P. (2013). Random Walk in Random and Non-random Environments, 3rd ed. World Scientific, Hackensack, NJ.
  • [18] Shafer, G. and Vovk, V. (2001). Probability and Finance: It’s Only a Game! Wiley, New York.
  • [19] Stout, W. F. (1970). A martingale analogue of Kolmogorov’s law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 15 279–290.
  • [20] Strassen, V. (1967). Almost sure behavior of sums of independent random variables and martingales. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1 315–343. Univ. California Press, Berkeley, CA.
  • [21] Ville, J. (1939). Étude Critique de la Notion de Collectif. Gauthier-Villars, Paris.