The Annals of Probability

Quasi-symmetries of determinantal point processes

Alexander I. Bufetov

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The main result of this paper is that determinantal point processes on $\mathbb{R}$ corresponding to projection operators with integrable kernels are quasi-invariant, in the continuous case, under the group of diffeomorphisms with compact support (Theorem 1.4); in the discrete case, under the group of all finite permutations of the phase space (Theorem 1.6). The Radon–Nikodym derivative is computed explicitly and is given by a regularized multiplicative functional. Theorem 1.4 applies, in particular, to the sine-process, as well as to determinantal point processes with the Bessel and the Airy kernels; Theorem 1.6 to the discrete sine-process and the Gamma kernel process. The paper answers a question of Grigori Olshanski.

Article information

Ann. Probab., Volume 46, Number 2 (2018), 956-1003.

Received: October 2015
Revised: May 2017
First available in Project Euclid: 9 March 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G55: Point processes
Secondary: 22E66: Analysis on and representations of infinite-dimensional Lie groups 60B10: Convergence of probability measures 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization 33C10: Bessel and Airy functions, cylinder functions, $_0F_1$

Determinantal point processes Gibbs property Palm measures integrable kernels multiplicative functionals


Bufetov, Alexander I. Quasi-symmetries of determinantal point processes. Ann. Probab. 46 (2018), no. 2, 956--1003. doi:10.1214/17-AOP1198.

Export citation


  • [1] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (2001). Uniform spanning forests. Ann. Probab. 29 1–65.
  • [2] Borodin, A., Okounkov, A. and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 481–515.
  • [3] Borodin, A. and Olshanski, G. (2005). Random partitions and the gamma kernel. Adv. Math. 194 141–202.
  • [4] Borodin, A. and Rains, E. M. (2005). Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121 291–317.
  • [5] Bufetov, A. I. (2012). On multiplicative functionals of determinantal processes. Uspekhi Mat. Nauk 67 177–178. Translation in Russian Math. Surveys 67 (2012) 181–182.
  • [6] Bufetov, A. I. (2012). On the Vershik–Kerov conjecture concerning the Shannon–McMillan–Breiman theorem for the Plancherel family of measures on the space of Young diagrams. Geom. Funct. Anal. 22 938–975.
  • [7] Bufetov, A. I. (2013). Infinite determinantal measures. Electron. Res. Announc. Math. Sci. 20 12–30.
  • [8] Bufetov, A. I. (2015). On the action of the diffeomorphism group on determinantal measures. Uspekhi Mat. Nauk 70 175–176. Translation in Russian Math. Surveys 70 (2015) 953–954.
  • [9] Camilier, I. and Decreusefond, L. (2010). Quasi-invariance and integration by parts for determinantal and permanental processes. J. Funct. Anal. 259 268–300.
  • [10] Daley, D. J. and Vere-Jones, D. (2008). An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, 2nd ed. Springer, New York.
  • [11] Ghosh, S. Rigidity and tolerance in Gaussian zeros and Ginibre eigenvalues: Quantitative estimates. Available at arXiv:1211.3506.
  • [12] Ghosh, S. (2015). Determinantal processes and completeness of random exponentials: The critical case. Probab. Theory Related Fields 163 643–665.
  • [13] Ghosh, S. and Peres, Y. (2017). Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. Duke Math. J. 166 1789–1858.
  • [14] Hough, J. B., Krishnapur, M., Peres, Y. and Virág, B. (2006). Determinantal processes and independence. Probab. Surv. 3 206–229.
  • [15] Its, A. R., Izergin, A. G., Korepin, V. E. and Slavnov, N. A. (1990). Differential equations for quantum correlation functions. Internat. J. Modern Phys. B 4 1003–1037.
  • [16] Kallenberg, O. (1976). Random Measures. Akademie-Verlag, Berlin.
  • [17] Kolmogoroff, A. (1977). Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin.
  • [18] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. I. Arch. Ration. Mech. Anal. 59 219–239.
  • [19] Lyons, R. (2003). Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98 167–212.
  • [20] Lytvynov, E. (2002). Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density. Rev. Math. Phys. 14 1073–1098.
  • [21] Macchi, O. (1975). The coincidence approach to stochastic point processes. Adv. in Appl. Probab. 7 83–122.
  • [22] Olshanski, G. (2011). The quasi-invariance property for the Gamma kernel determinantal measure. Adv. Math. 226 2305–2350.
  • [23] Reed, M. and Simon, B. (1980). Methods of Modern Mathematical Physics. I: Functional Analysis, 2nd ed. Academic Press, New York.
  • [24] Rohlin, V. A. (1949). On the fundamental ideas of measure theory. Mat. Sb. (N.S.) 25 107–150.
  • [25] Shirai, T. and Takahashi, Y. (2000). Fermion process and Fredholm determinant. In Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999). Int. Soc. Anal. Appl. Comput. 7 15–23. Kluwer Academic, Dordrecht.
  • [26] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes. J. Funct. Anal. 205 414–463.
  • [27] Shirai, T. and Takahashi, Y. (2003). Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties. Ann. Probab. 31 1533–1564.
  • [28] Simon, B. (2011). Trace Ideals and Their Applications, 2nd ed. Mathematical Surveys and Monographs 120. American Mathematical Society, Providence, RI.
  • [29] Sinaĭ, Ya. G. (1982). Theory of Phase Transitions: Rigorous Results. International Series in Natural Philosophy 108. Pergamon Press, Oxford. Translated from the Russian by J. Fritz, A. Krámli, P. Major and D. Szász.
  • [30] Soshnikov, A. (2000). Determinantal random point fields. Uspekhi Mat. Nauk 55 107–160.
  • [31] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 151–174.
  • [32] Tracy, C. A. and Widom, H. (1994). Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161 289–309.