The Annals of Probability

Free energy in the mixed $p$-spin models with vector spins

Dmitry Panchenko

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Using the synchronization mechanism developed in the previous work on the Potts spin glass model, we obtain the analogue of the Parisi formula for the free energy in the mixed even $p$-spin models with vector spins, which include the Sherrington–Kirkpatrick model with vector spins interacting through their scalar product. As a special case, this also establishes the sharpness of Talagrand’s upper bound for the free energy of multiple mixed $p$-spin systems coupled by constraining their overlaps.

Article information

Source
Ann. Probab., Volume 46, Number 2 (2018), 865-896.

Dates
Received: April 2016
Revised: April 2017
First available in Project Euclid: 9 March 2018

Permanent link to this document
https://projecteuclid.org/euclid.aop/1520586271

Digital Object Identifier
doi:10.1214/17-AOP1194

Mathematical Reviews number (MathSciNet)
MR3773376

Zentralblatt MATH identifier
06864075

Subjects
Primary: 60F10: Large deviations 60G15: Gaussian processes 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Keywords
Spin glasses free energy $p$-spin interactions vector spins

Citation

Panchenko, Dmitry. Free energy in the mixed $p$-spin models with vector spins. Ann. Probab. 46 (2018), no. 2, 865--896. doi:10.1214/17-AOP1194. https://projecteuclid.org/euclid.aop/1520586271


Export citation

References

  • [1] Aizenman, M. and Contucci, P. (1998). On the stability of the quenched state in mean-field spin-glass models. J. Stat. Phys. 92 765–783.
  • [2] Aizenman, M., Sims, R. and Starr, S. L. (2003). An extended variational principle for the SK spin-glass model. Phys. Rev., B Solid State 68 214403.
  • [3] Arguin, L.-P. and Aizenman, M. (2009). On the structure of quasi-stationary competing particle systems. Ann. Probab. 37 1080–1113.
  • [4] Austin, T. and Panchenko, D. (2014). A hierarchical version of the de Finetti and Aldous–Hoover representations. Probab. Theory Related Fields 159 809–823.
  • [5] Barra, A., Contucci, P., Mingione, E. and Tantari, D. (2015). Multi-species mean field spin glasses. Rigorous results. Ann. Henri Poincaré 16 691–708.
  • [6] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247–276.
  • [7] Chen, W.-K. (2013). The Aizenman–Sims–Starr scheme and Parisi formula for mixed $p$-spin spherical models. Electron. J. Probab. 18 no. 94.
  • [8] Chen, W.-K. (2013). Disorder chaos in the Sherrington–Kirkpatrick model with external field. Ann. Probab. 41 3345–3391.
  • [9] Chen, W.-K. (2014). Chaos in the mixed even-spin models. Comm. Math. Phys. 328 867–901.
  • [10] Chen, W.-K., Dey, P. and Panchenko, D. (2017). Fluctuations of the free energy in the mixed $p$-spin models with external field. Probab. Theory Related Fields 168 41–53.
  • [11] Chen, W.-K., Hsieh, H.-W., Hwang, C.-R. and Sheu, Y.-C. (2015). Disorder chaos in the spherical mean-field model. J. Stat. Phys. 160 417–429.
  • [12] Chen, W.-K. and Panchenko, D. (2013). An approach to chaos in some mixed $p$-spin models. Probab. Theory Related Fields 157 389–404.
  • [13] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York.
  • [14] Franz, S. and Leone, M. (2003). Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111 535–564.
  • [15] Franz, S., Parisi, G. and Virasoro, M. A. (1993). Free-energy cost for ultrametricity violations in spin glasses. Europhys. Lett. 22 405–411.
  • [16] Ghatak, S. K. and Sherrington, D. (1977). Crystal field effects in a general $S$ Ising spin glass. J. Phys. C, Solid State Phys. 10 3149.
  • [17] Ghirlanda, S. and Guerra, F. (1998). General properties of overlap probability distributions in disordered spin systems. Towards Parisi ultrametricity. J. Phys. A 31 9149–9155.
  • [18] Guerra, F. (1996). About the overlap distribution in mean field spin glass models. Internat. J. Modern Phys. B 10 1675–1684. Memorial issue for H. Umezawa.
  • [19] Guerra, F. (2003). Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 1–12.
  • [20] Mézard, M., Parisi, G. and Virasoro, M. A. (1987). Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics 9. World Scientific, Teaneck, NJ.
  • [21] Panchenko, D. (2005). A note on the free energy of the coupled system in the Sherrington–Kirkpatrick model. Markov Process. Related Fields 11 19–36.
  • [22] Panchenko, D. (2005). Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math. Phys. 17 793–857.
  • [23] Panchenko, D. (2010). The Ghirlanda–Guerra identities for mixed $p$-spin model. C. R. Math. Acad. Sci. Paris 348 189–192.
  • [24] Panchenko, D. (2010). A connection between the Ghirlanda–Guerra identities and ultrametricity. Ann. Probab. 38 327–347.
  • [25] Panchenko, D. (2011). Ghirlanda–Guerra identities and ultrametricity: An elementary proof in the discrete case. C. R. Math. Acad. Sci. Paris 349 813–816.
  • [26] Panchenko, D. (2012). A unified stability property in spin glasses. Comm. Math. Phys. 313 781–790.
  • [27] Panchenko, D. (2013). Spin glass models from the point of view of spin distributions. Ann. Probab. 41 1315–1361.
  • [28] Panchenko, D. (2013). The Parisi ultrametricity conjecture. Ann. of Math. (2) 177 383–393.
  • [29] Panchenko, D. (2013). The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York.
  • [30] Panchenko, D. (2014). The Parisi formula for mixed $p$-spin models. Ann. Probab. 42 946–958.
  • [31] Panchenko, D. (2015). The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Probab. 43 3494–3513.
  • [32] Panchenko, D. (2015). Hierarchical exchangeability of pure states in mean field spin glass models. Probab. Theory Related Fields 161 619–650.
  • [33] Panchenko, D. (2015). Free energy in the Potts spin glass. Available at arXiv:1512.00370.
  • [34] Panchenko, D. (2016). Chaos in temperature in generic $2p$-spin models. Comm. Math. Phys. 346 703–739.
  • [35] Panchenko, D. and Talagrand, M. (2004). Bounds for diluted mean-fields spin glass models. Probab. Theory Related Fields 130 319–336.
  • [36] Parisi, G. (1979). Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43 1754–1756.
  • [37] Parisi, G. (1980). A sequence of approximate solutions to the S–K model for spin glasses. J. Phys. A 13 L–115.
  • [38] Rizzo, T. and Crisanti, A. (2003). Chaos in temperature in the Sherrington–Kirkpatrick model. Phys. Rev. Lett. 90 137201.
  • [39] Ruelle, D. (1987). A mathematical reformulation of Derrida’s REM and GREM. Comm. Math. Phys. 108 225–239.
  • [40] Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of a spin glass. Phys. Rev. Lett. 35 1792–1796.
  • [41] Talagrand, M. (2003). Spin Glasses: A Challenge for Mathematicians. Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics 43. Springer, Berlin.
  • [42] Talagrand, M. (2006). The Parisi formula. Ann. of Math. (2) 163 221–263.
  • [43] Talagrand, M. (2006). Free energy of the spherical mean field model. Probab. Theory Related Fields 134 339–382.
  • [44] Talagrand, M. (2006). Parisi measures. J. Funct. Anal. 231 269–286.
  • [45] Talagrand, M. (2007). Mean field models for spin glasses: Some obnoxious problems. In Spin Glasses. Lecture Notes in Math. 1900 63–80. Springer, Berlin.
  • [46] Talagrand, M. (2011). Mean-Field Models for Spin Glasses. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics 54, 55. Springer, Berlin.