The Annals of Probability

Equilibrium fluctuation of the Atlas model

Amir Dembo and Li-Cheng Tsai

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the fluctuation of the Atlas model, where a unit drift is assigned to the lowest ranked particle among a semi-infinite ($\mathbb{Z}_{+}$-indexed) system of otherwise independent Brownian particles, initiated according to a Poisson point process on $\mathbb{R}_{+}$. In this context, we show that the joint law of ranked particles, after being centered and scaled by $t^{-\frac{1}{4}}$, converges as $t\to\infty$ to the Gaussian field corresponding to the solution of the Additive Stochastic Heat Equation (ASHE) on $\mathbb{R}_{+}$ with the Neumann boundary condition at zero. This allows us to express the asymptotic fluctuation of the lowest ranked particle in terms of a fractional Brownian Motion (fBM). In particular, we prove a conjecture of Pal and Pitman [Ann. Appl. Probab. 18 (2008) 2179–2207] about the asymptotic Gaussian fluctuation of the ranked particles.

Article information

Ann. Probab., Volume 45, Number 6B (2017), 4529-4560.

Received: March 2015
Revised: April 2016
First available in Project Euclid: 12 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60H15: Stochastic partial differential equations [See also 35R60] 82C22: Interacting particle systems [See also 60K35]

Equilibrium fluctuation fractional Brownian motion interacting particles reflected Brownian motion stochastic heat equation


Dembo, Amir; Tsai, Li-Cheng. Equilibrium fluctuation of the Atlas model. Ann. Probab. 45 (2017), no. 6B, 4529--4560. doi:10.1214/16-AOP1171.

Export citation


  • [1] Arratia, R. (1983). The motion of a tagged particle in the simple symmetric exclusion system on $\mathbf{Z}$. Ann. Probab. 11 362–373.
  • [2] Bass, R. F. and Pardoux, É. (1987). Uniqueness for diffusions with piecewise constant coefficients. Probab. Theory Related Fields 76 557–572.
  • [3] Cabezas, M., Dembo, A., Sarantsev, A. and Sidoravicius, V. (2017). Brownian particles of rank-dependent drifts: Out of equilibrium behavior. In preparation.
  • [4] Chatterjee, S. and Pal, S. (2010). A phase transition behavior for Brownian motions interacting through their ranks. Probab. Theory Related Fields 147 123–159.
  • [5] Chatterjee, S. and Pal, S. (2011). A combinatorial analysis of interacting diffusions. J. Theoret. Probab. 24 939–968.
  • [6] Dembo, A., Shkolnikov, M., Varadhan, S. R. S. and Zeitouni, O. (2016). Large deviations for diffusions interacting through their ranks. Comm. Pure Appl. Math. 69 1259–1313.
  • [7] Dürr, D., Goldstein, S. and Lebowitz, J. L. (1985). Asymptotics of particle trajectories in infinite one-dimensional systems with collisions. Comm. Pure Appl. Math. 38 573–597.
  • [8] Fernholz, E. R. (2002). Stochastic Portfolio Theory. Applications of Mathematics (New York): Stochastic Modelling and Applied Probability 48. Springer, New York.
  • [9] Fernholz, E. R. and Karatzas, I. (2009). Stochastic portfolio theory: An overview. In Handbook of Numerical Analysis 15 89–167. Elsevier, Amsterdam.
  • [10] Harris, T. E. (1965). Diffusion with “collisions” between particles. J. Appl. Probab. 2 323–338.
  • [11] Ichiba, T. and Karatzas, I. (2010). On collisions of Brownian particles. Ann. Appl. Probab. 20 951–977.
  • [12] Ichiba, T., Karatzas, I. and Shkolnikov, M. (2013). Strong solutions of stochastic equations with rank-based coefficients. Probab. Theory Related Fields 156 229–248.
  • [13] Ichiba, T., Papathanakos, V., Banner, A., Karatzas, I. and Fernholz, R. (2011). Hybrid Atlas models. Ann. Appl. Probab. 21 609–644.
  • [14] Jara, M. and Landim, C. (2006). Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 42 567–577.
  • [15] Kunita, H. (1997). Stochastic Flows and Stochastic Differential Equations. Cambridge Studies in Advanced Mathematics 24. Cambridge Univ. Press, Cambridge. Reprint of the 1990 original.
  • [16] Landim, C., Olla, S. and Volchan, S. (1998). Driven tracer particle in one dimensional symmetric simple exclusion. Comm. Math. Phys. 192 287–307.
  • [17] Landim, C. and Volchan, S. B. (2000). Equilibrium fluctuations for a driven tracer particle dynamics. Stochastic Process. Appl. 85 139–158.
  • [18] Pal, S. and Pitman, J. (2008). One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab. 18 2179–2207.
  • [19] Pal, S. and Shkolnikov, M. (2014). Concentration of measure for Brownian particle systems interacting through their ranks. Ann. Appl. Probab. 24 1482–1508.
  • [20] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin.
  • [21] Rost, H. and Vares, M. E. (1985). Hydrodynamics of a one dimensional nearest neighbor model. Contemp. Math. 41 329–342.
  • [22] Shkolnikov, M. (2011). Competing particle systems evolving by interacting Lévy processes. Ann. Appl. Probab. 21 1911–1932.
  • [23] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439. Springer, Berlin.