The Annals of Probability

A Poisson allocation of optimal tail

Roland Markó and Ádám Timár

Full-text: Open access

Abstract

The allocation problem for a $d$-dimensional Poisson point process is to find a way to partition the space to parts of equal size, and to assign the parts to the configuration points in a measurable, “deterministic” (equivariant) way. The goal is to make the diameter $R$ of the part assigned to a configuration point have fast decay. We present an algorithm for $d\geq3$ that achieves an $O(\operatorname{exp}(-cR^{d}))$ tail, which is optimal up to $c$. This improves the best previously known allocation rule, the gravitational allocation, which has an $\operatorname{exp}(-R^{1+o(1)})$ tail. The construction is based on the Ajtai–Komlós–Tusnády algorithm and uses the Gale–Shapley–Hoffman–Holroyd–Peres stable marriage scheme (as applied to allocation problems).

Article information

Source
Ann. Probab., Volume 44, Number 2 (2016), 1285-1307.

Dates
Received: March 2013
Revised: December 2014
First available in Project Euclid: 14 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.aop/1457960396

Digital Object Identifier
doi:10.1214/15-AOP1001

Mathematical Reviews number (MathSciNet)
MR3474472

Zentralblatt MATH identifier
1338.60027

Subjects
Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Keywords
Fair allocation Poisson process translation-equivariant mapping

Citation

Markó, Roland; Timár, Ádám. A Poisson allocation of optimal tail. Ann. Probab. 44 (2016), no. 2, 1285--1307. doi:10.1214/15-AOP1001. https://projecteuclid.org/euclid.aop/1457960396


Export citation

References

  • [1] Ajtai, M., Komlós, J. and Tusnády, G. (1984). On optimal matchings. Combinatorica 4 259–264.
  • [2] Chatterjee, S., Peled, R., Peres, Y. and Romik, D. (2010). Gravitational allocation to Poisson points. Ann. of Math. (2) 172 617–671.
  • [3] Chatterjee, S., Peled, R., Peres, Y. and Romik, D. (2010). Phase transitions in gravitational allocation. Geom. Funct. Anal. 20 870–917.
  • [4] Hoffman, C., Holroyd, A. E. and Peres, Y. (2006). A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 1241–1272.
  • [5] Holroyd, A. E. and Liggett, T. M. (2001). How to find an extra head: Optimal random shifts of Bernoulli and Poisson random fields. Ann. Probab. 29 1405–1425.
  • [6] Holroyd, A. E., Pemantle, R., Peres, Y. and Schramm, O. (2009). Poisson matching. Ann. Inst. Henri Poincaré Probab. Stat. 45 266–287.
  • [7] Holroyd, A. E. and Peres, Y. (2005). Extra heads and invariant allocations. Ann. Probab. 33 31–52.
  • [8] Huesmann, M. and Sturm, K.-T. (2013). Optimal transport from Lebesgue to Poisson. Ann. Probab. 41 2426–2478.
  • [9] Krikun, M. (2007). Connected allocation to Poisson points in $\mathbb{R}^{2}$. Electron. Commun. Probab. 12 140–145.
  • [10] Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. Akademie-Verlag, Berlin.
  • [11] Talagrand, M. and Yukich, J. E. (1993). The integrability of the square exponential transportation cost. Ann. Appl. Probab. 3 1100–1111.