The Annals of Probability
- Ann. Probab.
- Volume 43, Number 3 (2015), 1493-1534.
On L2 modulus of continuity of Brownian local times and Riesz potentials
Aurélien Deya, David Nualart, and Samy Tindel
Abstract
This article is concerned with modulus of continuity of Brownian local times. Specifically, we focus on three closely related problems: (a) Limit theorem for a Brownian modulus of continuity involving Riesz potentials, where the limit law is an intricate Gaussian mixture. (b) Central limit theorems for the projections of $L^{2}$ modulus of continuity for a one-dimensional Brownian motion. (c) Extension of the second result to a two-dimensional Brownian motion. Our proofs rely on a combination of stochastic calculus and Malliavin calculus tools, plus a thorough analysis of singular integrals.
Article information
Source
Ann. Probab., Volume 43, Number 3 (2015), 1493-1534.
Dates
First available in Project Euclid: 5 May 2015
Permanent link to this document
https://projecteuclid.org/euclid.aop/1430830288
Digital Object Identifier
doi:10.1214/13-AOP904
Mathematical Reviews number (MathSciNet)
MR3342669
Zentralblatt MATH identifier
1326.60112
Subjects
Primary: 60G15: Gaussian processes 60H07: Stochastic calculus of variations and the Malliavin calculus 60H10: Stochastic ordinary differential equations [See also 34F05] 65C30: Stochastic differential and integral equations
Keywords
Brownian motion local time Malliavin calculus
Citation
Deya, Aurélien; Nualart, David; Tindel, Samy. On L 2 modulus of continuity of Brownian local times and Riesz potentials. Ann. Probab. 43 (2015), no. 3, 1493--1534. doi:10.1214/13-AOP904. https://projecteuclid.org/euclid.aop/1430830288