The Annals of Probability

Large deviations for the contact process in random environment

Olivier Garet and Régine Marchand

Full-text: Open access

Abstract

The asymptotic shape theorem for the contact process in random environment gives the existence of a norm $\mu$ on $\mathbb{R}^{d}$ such that the hitting time $t(x)$ is asymptotically equivalent to $\mu(x)$ when the contact process survives. We provide here exponential upper bounds for the probability of the event $\{\frac{t(x)}{\mu(x)}\notin[1-\varepsilon,1+\varepsilon]\}$; these bounds are optimal for independent random environment. As a special case, this gives the large deviation inequality for the contact process in a deterministic environment, which, as far as we know, has not been established yet.

Article information

Source
Ann. Probab., Volume 42, Number 4 (2014), 1438-1479.

Dates
First available in Project Euclid: 3 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.aop/1404394069

Digital Object Identifier
doi:10.1214/13-AOP840

Mathematical Reviews number (MathSciNet)
MR3262483

Zentralblatt MATH identifier
1372.60139

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B43: Percolation [See also 60K35]

Keywords
Random growth contact process random environment almost subadditive ergodic theorem asymptotic shape theorem large deviation inequalities

Citation

Garet, Olivier; Marchand, Régine. Large deviations for the contact process in random environment. Ann. Probab. 42 (2014), no. 4, 1438--1479. doi:10.1214/13-AOP840. https://projecteuclid.org/euclid.aop/1404394069


Export citation

References

  • [1] Cerf, R. and Théret, M. (2011). Upper large deviations for the maximal flow through a domain of $\mathbb{R}^{d}$ in first passage percolation. Ann. Appl. Probab. 21 2075–2108.
  • [2] Cerf, R. and Théret, M. (2011). Law of large numbers for the maximal flow through a domain of $\mathbb{R}^{d}$ in first passage percolation. Trans. Amer. Math. Soc. 363 3665–3702.
  • [3] Cerf, R. and Théret, M. (2011). Lower large deviations for the maximal flow through a domain of $\mathbb{R}^{d}$ in first passage percolation. Probab. Theory Related Fields 150 635–661.
  • [4] Chow, Y. and Zhang, Y. (2003). Large deviations in first-passage percolation. Ann. Appl. Probab. 13 1601–1614.
  • [5] Couronné, O. (2004). Sur les grands clusters en percolation. Ph.D. thesis, Université Paris XI Orsay.
  • [6] Cranston, M., Gauthier, D. and Mountford, T. S. (2009). On large deviation regimes for random media models. Ann. Appl. Probab. 19 826–862.
  • [7] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–1040.
  • [8] Durrett, R. and Griffeath, D. (1982). Contact processes in several dimensions. Z. Wahrsch. Verw. Gebiete 59 535–552.
  • [9] Garet, O. and Marchand, R. (2012). Annealed upper large deviations for the asymptotic shape of the contact process in $\mathbb{Z}^{d}$. Unpublished manuscript.
  • [10] Garet, O. and Marchand, R. (2007). Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35 833–866.
  • [11] Garet, O. and Marchand, R. (2012). Asymptotic shape for the contact process in random environment. Ann. Appl. Probab. 22 1362–1410.
  • [12] Garet, O. and Marchand, R. (2014). Growth of a population of bacteria in a dynamical hostile environment. Adv. in Appl. Probab. 46. To appear.
  • [13] Grimmett, G. (1985). Large deviations in subadditive processes and first-passage percolation. In Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984). Contemp. Math. 41 175–194. Amer. Math. Soc., Providence, RI.
  • [14] Grimmett, G. and Kesten, H. (1984). First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 335–366.
  • [15] Hammersley, J. M. (1974). Postulates for subadditive processes. Ann. Probab. 2 652–680.
  • [16] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. 61–110. Springer, New York.
  • [17] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378.
  • [18] Kesten, H. (1986). Aspects of first passage percolation. In École d’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 125–264. Springer, Berlin.
  • [19] Kingman, J. F. C. (1973). Subadditive ergodic theory. Ann. Probab. 1 883–909. With discussion by D. L. Burkholder, D. Daley, H. Kesten, P. Ney, F. Spitzer and J. M. Hammersley, and a reply by the author.
  • [20] Kingman, J. F. C. (1976). Subadditive processes. In École d’Été de Probabilités de Saint-Flour, V–1975. Lecture Notes in Math. 539 167–223. Springer, Berlin.
  • [21] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71–95.
  • [22] Rossignol, R. and Théret, M. (2010). Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation. Ann. Inst. Henri Poincaré Probab. Stat. 46 1093–1131.
  • [23] Rossignol, R. and Théret, M. (2010). Law of large numbers for the maximal flow through tilted cylinders in two-dimensional first passage percolation. Stochastic Process. Appl. 120 873–900.
  • [24] Rossignol, R. and Théret, M. (2013). Lower large deviations for the maximal flow through tilted cylinders in two-dimensional first passage percolation. ESAIM Probab. Stat. 17 70–104.
  • [25] Seppäläinen, T. and Yukich, J. E. (2001). Large deviation principles for Euclidean functionals and other nearly additive processes. Probab. Theory Related Fields 120 309–345.
  • [26] Théret, M. (2007). Upper large deviations for the maximal flow in first-passage percolation. Stochastic Process. Appl. 117 1208–1233.
  • [27] Théret, M. (2008). On the small maximal flows in first passage percolation. Ann. Fac. Sci. Toulouse Math. (6) 17 207–219.