The Annals of Probability

Convergence in distribution for subcritical 2D oriented percolation seen from its rightmost point

E. D. Andjel

Full-text: Open access

Abstract

We study subcritical two-dimensional oriented percolation seen from its rightmost point on the set of infinite configurations which are bounded above. This a Feller process whose state space is not compact and has no invariant measures. We prove that it converges in distribution to a measure which charges only finite configurations.

Article information

Source
Ann. Probab., Volume 42, Number 3 (2014), 1285-1296.

Dates
First available in Project Euclid: 26 March 2014

Permanent link to this document
https://projecteuclid.org/euclid.aop/1395838130

Digital Object Identifier
doi:10.1214/13-AOP841

Mathematical Reviews number (MathSciNet)
MR3189072

Zentralblatt MATH identifier
1291.60198

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Oriented percolation rightmost point subcritical

Citation

Andjel, E. D. Convergence in distribution for subcritical 2D oriented percolation seen from its rightmost point. Ann. Probab. 42 (2014), no. 3, 1285--1296. doi:10.1214/13-AOP841. https://projecteuclid.org/euclid.aop/1395838130


Export citation

References

  • [1] Andjel, E. D., Schinazi, R. B. and Schonmann, R. H. (1990). Edge processes of one-dimensional stochastic growth models. Ann. Inst. Henri Poincaré Probab. Stat. 26 489–506.
  • [2] Cox, J. T., Durrett, R. and Schinazi, R. (1991). The critical contact process seen from the right edge. Probab. Theory Related Fields 87 325–332.
  • [3] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–1040.
  • [4] Ferrari, P. A., Kesten, H. and Martínez, S. (1996). $R$-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata. Ann. Appl. Probab. 6 577–616.
  • [5] Galves, A. and Presutti, E. (1987). Edge fluctuations for the one-dimensional supercritical contact process. Ann. Probab. 15 1131–1145.
  • [6] Kuczek, T. (1989). The central limit theorem for the right edge of supercritical oriented percolation. Ann. Probab. 17 1322–1332.
  • [7] Schonmann, R. H. (1987). Absence of a stationary distribution for the edge process of subcritical oriented percolation in two dimensions. Ann. Probab. 15 1146–1147.