The Annals of Probability
- Ann. Probab.
- Volume 42, Number 2 (2014), 794-817.
Komlós–Major–Tusnády approximation under dependence
István Berkes, Weidong Liu, and Wei Biao Wu
Full-text: Open access
Abstract
The celebrated results of Komlós, Major and Tusnády [Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131; Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58] give optimal Wiener approximation for the partial sums of i.i.d. random variables and provide a powerful tool in probability and statistics. In this paper we extend KMT approximation for a large class of dependent stationary processes, solving a long standing open problem in probability theory. Under the framework of stationary causal processes and functional dependence measures of Wu [Proc. Natl. Acad. Sci. USA 102 (2005) 14150–14154], we show that, under natural moment conditions, the partial sum processes can be approximated by Wiener process with an optimal rate. Our dependence conditions are mild and easily verifiable. The results are applied to ergodic sums, as well as to nonlinear time series and Volterra processes, an important class of nonlinear processes.
Article information
Source
Ann. Probab., Volume 42, Number 2 (2014), 794-817.
Dates
First available in Project Euclid: 24 February 2014
Permanent link to this document
https://projecteuclid.org/euclid.aop/1393251303
Digital Object Identifier
doi:10.1214/13-AOP850
Mathematical Reviews number (MathSciNet)
MR3178474
Zentralblatt MATH identifier
1308.60037
Subjects
Primary: 60F17: Functional limit theorems; invariance principles 60G10: Stationary processes 60G17: Sample path properties
Keywords
Stationary processes strong invariance principle KMT approximation weak dependence nonlinear time series ergodic sums
Citation
Berkes, István; Liu, Weidong; Wu, Wei Biao. Komlós–Major–Tusnády approximation under dependence. Ann. Probab. 42 (2014), no. 2, 794--817. doi:10.1214/13-AOP850. https://projecteuclid.org/euclid.aop/1393251303
References
- Bendat (1990) Bendat, J. S. (1990). Nonlinear System Analysis and Identification from Random Data. Wiley, New York.Mathematical Reviews (MathSciNet): MR1045198
- Berkes, Hörmann and Schauer (2011) Berkes, I., Hörmann, S. and Schauer, J. (2011). Split invariance principles for stationary processes. Ann. Probab. 39 2441–2473.Mathematical Reviews (MathSciNet): MR2932673
Digital Object Identifier: doi:10.1214/10-AOP603
Project Euclid: euclid.aop/1321539125 - Billingsley (1968) Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.Mathematical Reviews (MathSciNet): MR233396
- Bradley (2007) Bradley, R. C. (2007). Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, UT.
- Casti (1985) Casti, J. L. (1985). Nonlinear System Theory. Mathematics in Science and Engineering 175. Academic Press, Orlando, FL.Mathematical Reviews (MathSciNet): MR777143
- Chatterjee (2012) Chatterjee, S. (2012). A new approach to strong embeddings. Probab. Theory Related Fields 152 231–264.Mathematical Reviews (MathSciNet): MR2875758
Digital Object Identifier: doi:10.1007/s00440-010-0321-8 - Csörgő and Hall (1984) Csörgő, S. and Hall, P. (1984). The Komlós–Major–Tusnády approximations and their applications. Austral. J. Statist. 26 189–218.Mathematical Reviews (MathSciNet): MR766619
Digital Object Identifier: doi:10.1111/j.1467-842X.1984.tb01233.x - Csörgő and Révész (1974/75) Csörgő, M. and Révész, P. (1974/75). A new method to prove Strassen type laws of invariance principle. I, II. Z. Wahrsch. Verw. Gebiete 31 255–259; ibid. 31 261–269.Mathematical Reviews (MathSciNet): MR375411
- Csörgő and Révész (1981) Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic Press, New York.Mathematical Reviews (MathSciNet): MR666546
- Dedecker, Doukhan and Merlevède (2012) Dedecker, J., Doukhan, P. and Merlevède, F. (2012). Rates of convergence in the strong invariance principle under projective criteria. Electron. J. Probab. 17 31.
- Dedecker and Merlevède (2003) Dedecker, J. and Merlevède, F. (2003). The conditional central limit theorem in Hilbert spaces. Stochastic Process. Appl. 108 229–262.Mathematical Reviews (MathSciNet): MR2019054
Digital Object Identifier: doi:10.1016/j.spa.2003.07.004 - Dedecker et al. (2007) Dedecker, J., Doukhan, P., Lang, G., León R., J. R., Louhichi, S. and Prieur, C. (2007). Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. Springer, New York.Mathematical Reviews (MathSciNet): MR2338725
- Denker (1989) Denker, M. (1989). The central limit theorem for dynamical systems. In Dynamical Systems and Ergodic Theory (Warsaw, 1986). Banach Center Publ. 23 33–62. PWN, Warsaw.Mathematical Reviews (MathSciNet): MR1102700
- Denker and Keller (1986) Denker, M. and Keller, G. (1986). Rigorous statistical procedures for data from dynamical systems. J. Stat. Phys. 44 67–93.
- Denker and Philipp (1984) Denker, M. and Philipp, W. (1984). Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Theory Dynam. Systems 4 541–552.Mathematical Reviews (MathSciNet): MR779712
Digital Object Identifier: doi:10.1017/S0143385700002637 - Diaconis and Freedman (1999) Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76.Mathematical Reviews (MathSciNet): MR1669737
Digital Object Identifier: doi:10.1137/S0036144598338446 - Donsker (1952) Donsker, M. D. (1952). Justification and extension of Doob’s heuristic approach to the Komogorov–Smirnov theorems. Ann. Math. Statistics 23 277–281.Mathematical Reviews (MathSciNet): MR47288
Digital Object Identifier: doi:10.1214/aoms/1177729445
Project Euclid: euclid.aoms/1177729445 - Doob (1949) Doob, J. L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. Ann. Math. Statistics 20 393–403.Mathematical Reviews (MathSciNet): MR30732
Digital Object Identifier: doi:10.1214/aoms/1177729991
Project Euclid: euclid.aoms/1177729991 - Eberlein and Taqqu (1986) Eberlein, E. and Taqqu, M. S., eds. (1986). Dependence in Probability and Statistics: A Survey of Recent Results. Progress in Probability and Statistics 11. Birkhäuser, Boston.Mathematical Reviews (MathSciNet): MR899982
- Erdös and Kac (1946) Erdös, P. and Kac, M. (1946). On certain limit theorems of the theory of probability. Bull. Amer. Math. Soc. (N.S.) 52 292–302.Mathematical Reviews (MathSciNet): MR15705
Digital Object Identifier: doi:10.1090/S0002-9904-1946-08560-2
Project Euclid: euclid.bams/1183507847 - Eubank and Speckman (1993) Eubank, R. L. and Speckman, P. L. (1993). Confidence bands in nonparametric regression. J. Amer. Statist. Assoc. 88 1287–1301.Mathematical Reviews (MathSciNet): MR1245362
Digital Object Identifier: doi:10.1080/01621459.1993.10476410 - Götze and Zaitsev (2009) Götze, F. and Zaitsev, A. Y. (2009). Bounds for the rate of strong approximation in the multidimensional invariance principle. Theory Probab. Appl. 53 59–80.
- Hannan (1979) Hannan, E. J. (1979). The central limit theorem for time series regression. Stochastic Process. Appl. 9 281–289.Mathematical Reviews (MathSciNet): MR562049
Digital Object Identifier: doi:10.1016/0304-4149(79)90050-4 - Hofbauer and Keller (1982) Hofbauer, F. and Keller, G. (1982). Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 119–140.
- Ibragimov and Linnik (1971) Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters–Noordhoff Publishing, Groningen.Mathematical Reviews (MathSciNet): MR322926
- Komlós, Major and Tusnády (1975) Komlós, J., Major, P. and Tusnády, G. (1975). An approximation of partial sums of independent $\mathrm{RV}$’s and the sample $\mathrm{DF}$. I. Z. Wahrsch. Verw. Gebiete 32 111–131.
- Komlós, Major and Tusnády (1976) Komlós, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 33–58.
- Liu, Han and Wu (2013) Liu, W., Han, X. and Wu, W. B. (2013). Probability and moment inequalities under dependence. Statist. Sinica 23 1257–1272.Mathematical Reviews (MathSciNet): MR3114713
- Liu and Lin (2009) Liu, W. and Lin, Z. (2009). Strong approximation for a class of stationary processes. Stochastic Process. Appl. 119 249–280.Mathematical Reviews (MathSciNet): MR2485027
Digital Object Identifier: doi:10.1016/j.spa.2008.01.012 - Merlevède and Rio (2012) Merlevède, F. and Rio, E. (2012). Strong approximation of partial sums under dependence conditions with application to dynamical systems. Stochastic Process. Appl. 122 386–417.Mathematical Reviews (MathSciNet): MR2860454
Digital Object Identifier: doi:10.1016/j.spa.2011.08.012 - Ornstein (1974) Ornstein, D. S. (1974). Ergodic Theory, Randomness, and Dynamical Systems. Yale Univ. Press, New Haven, CT.Mathematical Reviews (MathSciNet): MR447525
- Priestley (1988) Priestley, M. B. (1988). Nonlinear and Nonstationary Time Series Analysis. Academic Press, London.Mathematical Reviews (MathSciNet): MR991969
- Prohorov (1956) Prohorov, Y. V. (1956). Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1 157–214.Mathematical Reviews (MathSciNet): MR84896
- Rugh (1981) Rugh, W. J. (1981). Nonlinear System Theory: The Volterra–Wiener Approach. Johns Hopkins Univ. Press, Baltimore, MD.Mathematical Reviews (MathSciNet): MR713994
- Sakhanenko (1991) Sakhanenko, A. I. (1991). On the accuracy of normal approximation in the invariance principle. Siberian Math. J. 47 1113–1127.
- Sakhanenko (2006) Sakhanenko, A. I. (2006). Estimates in the invariance principle in terms of truncated power moments. Sibirsk. Mat. Zh. 47 1355–1371.Mathematical Reviews (MathSciNet): MR2302850
- Schetzen (1980) Schetzen, M. (1980). The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York.Mathematical Reviews (MathSciNet): MR562917
- Shao and Lu (1987) Shao, Q. M. and Lu, C. R. (1987). Strong approximations for partial sums of weakly dependent random variables. Sci. Sinica Ser. A 30 575–587.Mathematical Reviews (MathSciNet): MR1000718
- Shao and Wu (2007) Shao, X. and Wu, W. B. (2007). Asymptotic spectral theory for nonlinear time series. Ann. Statist. 35 1773–1801.Mathematical Reviews (MathSciNet): MR2351105
Digital Object Identifier: doi:10.1214/009053606000001479
Project Euclid: euclid.aos/1188405630 - Shields (1973) Shields, P. (1973). The Theory of Bernoulli Shifts. Univ. Chicago Press, Chicago, Il.Mathematical Reviews (MathSciNet): MR442198
- Shorack and Wellner (1986) Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.Mathematical Reviews (MathSciNet): MR838963
- Strassen (1964) Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211–226.
- Tong (1990) Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford Statistical Science Series 6. Oxford Univ. Press, New York.Mathematical Reviews (MathSciNet): MR1079320
- Volný (1993) Volný, D. (1993). Approximating martingales and the central limit theorem for strictly stationary processes. Stochastic Process. Appl. 44 41–74.Mathematical Reviews (MathSciNet): MR1198662
Digital Object Identifier: doi:10.1016/0304-4149(93)90037-5 - Volný (1999) Volný, D. (1999). Invariance principles and Gaussian approximation for strictly stationary processes. Trans. Amer. Math. Soc. 351 3351–3371.Mathematical Reviews (MathSciNet): MR1624218
Digital Object Identifier: doi:10.1090/S0002-9947-99-02401-0 - Weiss (1975) Weiss, B. (1975). The structure of Bernoulli systems. In Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 2 321–325. Canad. Math. Congress, Montreal.Mathematical Reviews (MathSciNet): MR419738
- Wiener (1958) Wiener, N. (1958). Nonlinear Problems in Random Theory. Technology Press of The Massachusetts Institute of Technology and Wiley, New York.Mathematical Reviews (MathSciNet): MR100912
- Woodroofe (1992) Woodroofe, M. (1992). A central limit theorem for functions of a Markov chain with applications to shifts. Stochastic Process. Appl. 41 33–44.Mathematical Reviews (MathSciNet): MR1162717
Digital Object Identifier: doi:10.1016/0304-4149(92)90145-G - Wu (2005) Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150–14154.
- Wu (2007) Wu, W. B. (2007). Strong invariance principles for dependent random variables. Ann. Probab. 35 2294–2320.Mathematical Reviews (MathSciNet): MR2353389
Digital Object Identifier: doi:10.1214/009117907000000060
Project Euclid: euclid.aop/1191860422 - Wu (2011) Wu, W. B. (2011). Asymptotic theory for stationary processes. Stat. Interface 4 207–226.Mathematical Reviews (MathSciNet): MR2812816
Digital Object Identifier: doi:10.4310/SII.2011.v4.n2.a15 - Wu, Chiang and Hoover (1998) Wu, C. O., Chiang, C.-T. and Hoover, D. R. (1998). Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Amer. Statist. Assoc. 93 1388–1402.Mathematical Reviews (MathSciNet): MR1666635
Digital Object Identifier: doi:10.1080/01621459.1998.10473800 - Wu and Shao (2004) Wu, W. B. and Shao, X. (2004). Limit theorems for iterated random functions. J. Appl. Probab. 41 425–436.Mathematical Reviews (MathSciNet): MR2052582
Digital Object Identifier: doi:10.1239/jap/1082999076
Project Euclid: euclid.jap/1082999076 - Wu and Zhao (2007) Wu, W. B. and Zhao, Z. (2007). Inference of trends in time series. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 391–410.Mathematical Reviews (MathSciNet): MR2323759
Digital Object Identifier: doi:10.1111/j.1467-9868.2007.00594.x

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Split invariance principles for stationary processes
Berkes, István, Hörmann, Siegfried, and Schauer, Johannes, The Annals of Probability, 2011 - Nearly root-$n$ approximation for regression quantile processes
Portnoy, Stephen, The Annals of Statistics, 2012 - Strong Approximation for Multivariate Empirical and Related Processes, Via KMT Constructions
Massart, Pascal, The Annals of Probability, 1989
- Split invariance principles for stationary processes
Berkes, István, Hörmann, Siegfried, and Schauer, Johannes, The Annals of Probability, 2011 - Nearly root-$n$ approximation for regression quantile processes
Portnoy, Stephen, The Annals of Statistics, 2012 - Strong Approximation for Multivariate Empirical and Related Processes, Via KMT Constructions
Massart, Pascal, The Annals of Probability, 1989 - A Refinement of the KMT Inequality for the Uniform Empirical Process
Mason, David M. and Zwet, Willem R. Van, The Annals of Probability, 1987 - An application of the KMT construction to the pathwise weak error in the Euler approximation of one-dimensional diffusion process with linear diffusion coefficient
Clément, Emmanuelle and Gloter, Arnaud, The Annals of Applied Probability, 2017 - Improved Erdos-Renyi and Strong Approximation Laws for Increments of Partial Sums
Csorgo, M. and Steinebach, J., The Annals of Probability, 1981 - A Note on the Approximation of the Uniform Empirical Process
Major, Peter, The Annals of Probability, 1990 - Strong Approximation for Set-Indexed Partial-Sum Processes, Via KMT Constructions II
Rio, Emmanuel, The Annals of Probability, 1993 - Strong Approximation for Set-Indexed Partial Sum Processes Via KMT Constructions I
Rio, Emmanuel, The Annals of Probability, 1993 - Quantile coupling inequalities and their applications
Mason, David M. and Zhou, Harrison H., Probability Surveys, 2012