The Annals of Probability

Distances in the highly supercritical percolation cluster

Anne-Laure Basdevant, Nathanaël Enriquez, and Lucas Gerin

Full-text: Open access


On the supercritical percolation cluster with parameter $p$, the distances between two distant points of the axis are asymptotically increased by a factor $1+\frac{1-p}{2}+o(1-p)$ with respect to the usual distance. The proof is based on an apparently new connection with the TASEP (totally asymmetric simple exclusion process).

Article information

Ann. Probab., Volume 41, Number 6 (2013), 4342-4358.

First available in Project Euclid: 20 November 2013

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B43: Percolation [See also 60K35]

First-passage percolation supercritical percolation TASEP


Basdevant, Anne-Laure; Enriquez, Nathanaël; Gerin, Lucas. Distances in the highly supercritical percolation cluster. Ann. Probab. 41 (2013), no. 6, 4342--4358. doi:10.1214/12-AOP802.

Export citation


  • [1] Durrett, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999–1040.
  • [2] Evans, M. R., Rajewsky, N. and Speer, E. R. (1999). Exact solution of a cellular automaton for traffic. J. Stat. Phys. 95 45–96.
  • [3] Garet, O. and Marchand, R. (2004). Asymptotic shape for the chemical distance and first-passage percolation on the infinite Bernoulli cluster. ESAIM Probab. Stat. 8 169–199 (electronic).
  • [4] Gärtner, J. and Molchanov, S. A. (1990). Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 613–655.
  • [5] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [6] Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, CA 61–110. Springer, New York.
  • [7] Kesten, H. (1986). Aspects of first passage percolation. In École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 125–264. Springer, Berlin.