The Annals of Probability

Subcritical percolation with a line of defects

S. Friedli, D. Ioffe, and Y. Velenik

Full-text: Open access

Abstract

We consider the Bernoulli bond percolation process $\mathbb{P} _{p,p'}$ on the nearest-neighbor edges of $\mathbb{Z} ^{d}$, which are open independently with probability $p<p_{c}$, except for those lying on the first coordinate axis, for which this probability is $p'$. Define

\[\xi_{p,p'}:=-\lim_{n\to\infty}n^{-1}\log\mathbb{P} _{p,p'}(0\leftrightarrow n\mathbf{e} _{1})\]

and $\xi_{p}:=\xi_{p,p}$. We show that there exists $p_{c}'=p_{c}'(p,d)$ such that $\xi_{p,p'}=\xi_{p}$ if $p'<p_{c}'$ and $\xi_{p,p'}<\xi_{p}$ if $p'>p_{c}'$. Moreover, $p_{c}'(p,2)=p_{c}'(p,3)=p$, and $p_{c}'(p,d)>p$ for $d\geq 4$. We also analyze the behavior of $\xi_{p}-\xi_{p,p'}$ as $p'\downarrow p_{c}'$ in dimensions $d=2,3$. Finally, we prove that when $p'>p_{c}'$, the following purely exponential asymptotics holds:

\[\mathbb{P} _{p,p'}(0\leftrightarrow n\mathbf{e} _{1})=\psi_{d}e^{-\xi_{p,p'}n}\bigl(1+o(1)\bigr)\]

for some constant $\psi_{d}=\psi_{d}(p,p')$, uniformly for large values of $n$. This work gives the first results on the rigorous analysis of pinning-type problems, that go beyond the effective models and don’t rely on exact computations.

Article information

Source
Ann. Probab., Volume 41, Number 3B (2013), 2013-2046.

Dates
First available in Project Euclid: 15 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.aop/1368623518

Digital Object Identifier
doi:10.1214/11-AOP720

Mathematical Reviews number (MathSciNet)
MR3098065

Zentralblatt MATH identifier
06216095

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B43: Percolation [See also 60K35]

Keywords
Percolation local limit theorem renewal Russo formula pinning random walk correlation length Ornstein–Zernike analyticity

Citation

Friedli, S.; Ioffe, D.; Velenik, Y. Subcritical percolation with a line of defects. Ann. Probab. 41 (2013), no. 3B, 2013--2046. doi:10.1214/11-AOP720. https://projecteuclid.org/euclid.aop/1368623518


Export citation

References

  • [1] Abraham, D. B. (1986). Surface structures and phase transitions—exact results. In Phase Transitions and Critical Phenomena, Vol. 10 1–74. Academic Press, London.
  • [2] Aizenman, M. and Barsky, D. J. (1987). Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 489–526.
  • [3] Alexander, K. S. and Zygouras, N. (2010). Equality of critical points for polymer depinning transitions with loop exponent one. Ann. Appl. Probab. 20 356–366.
  • [4] Beffara, V., Sidoravicius, V., Spohn, H. and Vares, M. E. (2006). Polymer pinning in a random medium as influence percolation. In Dynamics & Stochastics. Institute of Mathematical Statistics Lecture Notes—Monograph Series 48 1–15. IMS, Beachwood, OH.
  • [5] Campanino, M., Chayes, J. T. and Chayes, L. (1991). Gaussian fluctuations of connectivities in the subcritical regime of percolation. Probab. Theory Related Fields 88 269–341.
  • [6] Campanino, M. and Ioffe, D. (2002). Ornstein–Zernike theory for the Bernoulli bond percolation on $\mathbb{Z}^{d}$. Ann. Probab. 30 652–682.
  • [7] Campanino, M., Ioffe, D. and Velenik, Y. (2003). Ornstein–Zernike theory for finite range Ising models above $T_{c}$. Probab. Theory Related Fields 125 305–349.
  • [8] Campanino, M., Ioffe, D. and Velenik, Y. (2008). Fluctuation theory of connectivities for subcritical random cluster models. Ann. Probab. 36 1287–1321.
  • [9] Caravenna, F. (2005). A local limit theorem for random walks conditioned to stay positive. Probab. Theory Related Fields 133 508–530.
  • [10] Giacomin, G. (2007). Random Polymer Models. Imperial College Press, London.
  • [11] Giacomin, G., Lacoin, H. and Toninelli, F. (2010). Marginal relevance of disorder for pinning models. Comm. Pure Appl. Math. 63 233–265.
  • [12] Greenberg, L. and Ioffe, D. (2005). On an invariance principle for phase separation lines. Ann. Inst. Henri Poincaré Probab. Stat. 41 871–885.
  • [13] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [14] Ioffe, D. and Velenik, Y. (2008). Ballistic phase of self-interacting random walks. In Analysis and Stochastics of Growth Processes and Interface Models 55–79. Oxford Univ. Press, Oxford.
  • [15] Jain, N. C. and Pruitt, W. E. (1972). The range of random walk. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability Theory 31–50. Univ. California Press, Berkeley, CA.
  • [16] Newman, C. M. and Wu, C. C. (1997). Percolation and contact processes with low-dimensional inhomogeneity. Ann. Probab. 25 1832–1845.
  • [17] Velenik, Y. (2006). Localization and delocalization of random interfaces. Probab. Surv. 3 112–169.
  • [18] Zhang, Y. (1994). A note on inhomogeneous percolation. Ann. Probab. 22 803–819.