The Annals of Probability

Convergence of clock processes in random environments and ageing in the $p$-spin SK model

Anton Bovier and Véronique Gayrard

Full-text: Open access

Abstract

We derive a general criterion for the convergence of clock processes in random dynamics in random environments that is applicable in cases when correlations are not negligible, extending recent results by Gayrard [(2010), (2011), forthcoming], based on general criterion for convergence of sums of dependent random variables due to Durrett and Resnick [Ann. Probab. 6 (1978) 829–846]. We demonstrate the power of this criterion by applying it to the case of random hopping time dynamics of the $p$-spin SK model. We prove that on a wide range of time scales, the clock process converges to a stable subordinator almost surely with respect to the environment. We also show that a time-time correlation function converges to the arcsine law for this subordinator, almost surely. This improves recent results of Ben Arous, Bovier and Černý [Comm. Math. Phys. 282 (2008) 663–695] that obtained similar convergence results in law, with respect to the random environment.

Article information

Source
Ann. Probab., Volume 41, Number 2 (2013), 817-847.

Dates
First available in Project Euclid: 8 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.aop/1362750943

Digital Object Identifier
doi:10.1214/11-AOP705

Mathematical Reviews number (MathSciNet)
MR3077527

Zentralblatt MATH identifier
1267.82114

Subjects
Primary: 82C44: Dynamics of disordered systems (random Ising systems, etc.) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60G70: Extreme value theory; extremal processes

Keywords
Random dynamics random environments clock process Lévy processes spin glasses aging

Citation

Bovier, Anton; Gayrard, Véronique. Convergence of clock processes in random environments and ageing in the $p$-spin SK model. Ann. Probab. 41 (2013), no. 2, 817--847. doi:10.1214/11-AOP705. https://projecteuclid.org/euclid.aop/1362750943


Export citation

References

  • [1] Ben Arous, G., Bovier, A. and Černý, J. (2008). Universality of the REM for dynamics of mean-field spin glasses. Comm. Math. Phys. 282 663–695.
  • [2] Ben Arous, G., Bovier, A. and Gayrard, V. (2002). Aging in the random energy model. Phys. Rev. Lett. 88 087201.
  • [3] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys. 235 379–425.
  • [4] Ben Arous, G., Bovier, A. and Gayrard, V. (2003). Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys. 236 1–54.
  • [5] Ben Arous, G. and Černý, J. (2005). Bouchaud’s model exhibits two different aging regimes in dimension one. Ann. Appl. Probab. 15 1161–1192.
  • [6] Ben Arous, G. and Černý, J. (2006). Dynamics of trap models. In Mathematical Statistical Physics 331–394. Elsevier, Amsterdam.
  • [7] Ben Arous, G. and Černý, J. (2007). Scaling limit for trap models on $\mathbb{Z}^{d}$. Ann. Probab. 35 2356–2384.
  • [8] Ben Arous, G. and Černý, J. (2008). The arcsine law as a universal aging scheme for trap models. Comm. Pure Appl. Math. 61 289–329.
  • [9] Ben Arous, G., Černý, J. and Mountford, T. (2006). Aging in two-dimensional Bouchaud’s model. Probab. Theory Related Fields 134 1–43.
  • [10] Bouchaud, J. P. (1992). Weak ergodicity breaking and aging in disordered systems. J. Phys. I (France) 2 1705–1713.
  • [11] Bouchaud, J. P., Cugliandolo, L., Kurchan, J. and Mézard, M. (1998). Out of equilibrium dynamics in spin-glasses and other glassy systems. In Spin Glasses and Random Fields (A. P. Young, ed.). World Scientific, Singapore.
  • [12] Bouchaud, J. P. and Dean, D. S. (1995). Aging on Parisi’s tree. J. Phys. I (France) 5 265.
  • [13] Durrett, R. and Resnick, S. I. (1978). Functional limit theorems for dependent variables. Ann. Probab. 6 829–846.
  • [14] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed. Wiley, New York.
  • [15] Gayrard, V. (2012). Convergence of clock process in random environments and aging in Bouchaud’s asymmetric trap model on the complete graph. Electron. J. Probab. 17 1–33.
  • [16] Gayrard, V. (2010). Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM. Preprint. Available at arXiv:1008.3849.
  • [17] Gayrard, V. (2011). Aging in reversible dynamics of disordered systems. III. Emergence of the arcsine law in the Metropolis dynamics of the REM. Preprint in preparation, LAPT, Marseille.
  • [18] Gnedenko, B. V. and Kolmogorov, A. N. (1949). Predel’nye Raspredeleniya Dlya Summ Nezavisimyh Slučaĭ nyh Veličin. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad.
  • [19] Goldstein, M. (1969). Viscous liquids and the glass transition: A potential energy barrier picture. The Journal of Chemical Physics 51 3728–3739.
  • [20] Kemperman, J. H. B. (1974). The Passage Problem for a Stationary Markov Chain. Reidel, Dordrecht, Holland.
  • [21] Monthus, C. and Bouchaud, J. P. (1996). Models of traps and glass phenomenology. J. Phys. A 29 3847–3869.
  • [22] Rinn, B., Maass, P. and Bouchaud, J. P. (2000). Multiple scaling regimes in simple aging models. Phys. Rev. Lett. 84 5403–5406.
  • [23] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 1. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge.
  • [24] Sinaĭ, Y. G. (1982). The limit behavior of a one-dimensional random walk in a random environment. Teor. Veroyatn. Primen. 27 247–258.
  • [25] Solomon, F. (1975). Random walks in a random environment. Ann. Probab. 3 1–31.
  • [26] Whitt, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York.