The Annals of Probability

A CLT for empirical processes involving time-dependent data

James Kuelbs, Thomas Kurtz, and Joel Zinn

Full-text: Open access

Abstract

For stochastic processes $\{X_{t} : t\in E\}$, we establish sufficient conditions for the empirical process based on $\{I_{X_{t}\le y}-\operatorname{Pr} (X_{t}\le y) : t\in E,y\in\mathbb{R}\}$ to satisfy the CLT uniformly in $t\in E$, $y\in\mathbb{R}$. Corollaries of our main result include examples of classical processes where the CLT holds, and we also show that it fails for Brownian motion tied down at zero and $E=[0,1]$.

Article information

Source
Ann. Probab., Volume 41, Number 2 (2013), 785-816.

Dates
First available in Project Euclid: 8 March 2013

Permanent link to this document
https://projecteuclid.org/euclid.aop/1362750942

Digital Object Identifier
doi:10.1214/11-AOP711

Mathematical Reviews number (MathSciNet)
MR3077526

Zentralblatt MATH identifier
1287.60034

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60F17: Functional limit theorems; invariance principles

Keywords
Central limit theorems empirical processes

Citation

Kuelbs, James; Kurtz, Thomas; Zinn, Joel. A CLT for empirical processes involving time-dependent data. Ann. Probab. 41 (2013), no. 2, 785--816. doi:10.1214/11-AOP711. https://projecteuclid.org/euclid.aop/1362750942


Export citation

References

  • Andersen, N. T., Giné, E., Ossiander, M. and Zinn, J. (1988). The central limit theorem and the law of iterated logarithm for empirical processes under local conditions. Probab. Theory Related Fields 77 271–305.
  • Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
  • Dudley, R. M. (1999). Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics 63. Cambridge Univ. Press, Cambridge.
  • Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics 1. Academic Press, New York.
  • Fernique, X. (1975). Regularité des trajectoires des fonctions aléatoires gaussiennes. In École D’Été de Probabilités de Saint-Flour, IV-1974. Lecture Notes in Math. 480 1–96. Springer, Berlin.
  • Fernique, X. (1985). Sur la convergence étroite des mesures gaussiennes. Z. Wahrsch. Verw. Gebiete 68 331–336.
  • Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes (with discussion). Ann. Probab. 12 929–998.
  • Goodman, V. and Kuelbs, J. (1991). Rates of clustering for some Gaussian self-similar processes. Probab. Theory Related Fields 88 47–75.
  • Kuelbs, J. (1976). A strong convergence theorem for Banach space valued random variables. Ann. Probab. 4 744–771.
  • Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 23. Springer, Berlin.
  • Rüschendorf, L. (2009). On the distributional transform, Sklar’s theorem, and the empirical copula process. J. Statist. Plann. Inference 139 3921–3927.
  • Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika (Prague) 9 449–460.
  • Swanson, J. (2007). Weak convergence of the scaled median of independent Brownian motions. Probab. Theory Related Fields 138 269–304.
  • Swanson, J. (2011). Fluctuations of the empirical quantiles of independent Brownian motions. Stochastic Process. Appl. 121 479–514.
  • Talagrand, M. (1988). Donsker classes of sets. Probab. Theory Related Fields 78 169–191.
  • Talagrand, M. (2005). The Generic Chaining: Upper and Lower Bounds of Stochastic Processes. Springer, Berlin.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York.
  • Vervaat, W. (1972). Functional central limit theorems for processes with positive drift and their inverses. Z. Wahrsch. Verw. Gebiete 23 245–253.
  • Yeh, J. (1960). Wiener measure in a space of functions of two variables. Trans. Amer. Math. Soc. 95 433–450.