The Annals of Probability

Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation

Zhen-Qing Chen, Panki Kim, and Renming Song

Full-text: Open access

Abstract

Suppose that $d\geq2$ and $\alpha\in(1,2)$. Let $D$ be a bounded $C^{1,1}$ open set in ${\mathbb{R}}^{d}$ and $b$ an ${\mathbb{R}}^{d}$-valued function on ${\mathbb{R}}^{d}$ whose components are in a certain Kato class of the rotationally symmetric $\alpha$-stable process. In this paper, we derive sharp two-sided heat kernel estimates for $\mathcal{L} ^{b}=\Delta^{\alpha/2}+b\cdot\nabla$ in $D$ with zero exterior condition. We also obtain the boundary Harnack principle for $\mathcal{L} ^{b}$ in $D$ with explicit decay rate.

Article information

Source
Ann. Probab., Volume 40, Number 6 (2012), 2483-2538.

Dates
First available in Project Euclid: 26 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.aop/1351258733

Digital Object Identifier
doi:10.1214/11-AOP682

Mathematical Reviews number (MathSciNet)
MR3050510

Zentralblatt MATH identifier
1264.60060

Subjects
Primary: 60J35: Transition functions, generators and resolvents [See also 47D03, 47D07] 47G20: Integro-differential operators [See also 34K30, 35R09, 35R10, 45Jxx, 45Kxx] 60J75: Jump processes
Secondary: 47D07: Markov semigroups and applications to diffusion processes {For Markov processes, see 60Jxx}

Keywords
Symmetric $\alpha$-stable process gradient operator heat kernel transition density Green function exit time Lévy system boundary Harnack inequality Kato class

Citation

Chen, Zhen-Qing; Kim, Panki; Song, Renming. Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Ann. Probab. 40 (2012), no. 6, 2483--2538. doi:10.1214/11-AOP682. https://projecteuclid.org/euclid.aop/1351258733


Export citation

References

  • [1] Billingsley, P. (1974). Conditional distributions and tightness. Ann. Probab. 2 480–485.
  • [2] Blumenthal, R. M. and Getoor, R. K. (1960). Some theorems on stable processes. Trans. Amer. Math. Soc. 95 263–273.
  • [3] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory. Pure and Applied Mathematics 29. Academic Press, New York.
  • [4] Bogdan, K. (1997). The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 43–80.
  • [5] Bogdan, K., Grzywny, T. and Ryznar, M. (2010). Heat kernel estimates for the fractional Laplacian with Dirichlet conditions. Ann. Probab. 38 1901–1923.
  • [6] Bogdan, K. and Jakubowski, T. (2007). Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271 179–198.
  • [7] Bogdan, K. and Jakubowski, T. (2012). Estimates of the Green function for the fractional Laplacian perturbed by gradient. Potential Anal. 36 455–481.
  • [8] Bogdan, K., Kulczycki, T. and Nowak, A. (2002). Gradient estimates for harmonic and $q$-harmonic functions of symmetric stable processes. Illinois J. Math. 46 541–556.
  • [9] Chen, Z.-Q., Kim, P. and Song, R. (2010). Heat kernel estimates for the Dirichlet fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12 1307–1329.
  • [10] Chen, Z.-Q., Kim, P. and Song, R. (2010). Two-sided heat kernel estimates for censored stable-like processes. Probab. Theory Related Fields 146 361–399.
  • [11] Chen, Z. Q., Kim, P., Song, R. and Vondraček, Z. (2012). Boundary Harnack principle for $\Delta+\Delta^{\alpha/2}$. Trans. Amer. Math. Soc. To appear.
  • [12] Chen, Z.-Q. and Kumagai, T. (2003). Heat kernel estimates for stable-like processes on $d$-sets. Stochastic Process. Appl. 108 27–62.
  • [13] Chen, Z.-Q. and Kumagai, T. (2008). Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Related Fields 140 277–317.
  • [14] Chen, Z.-Q. and Song, R. (1998). Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312 465–501.
  • [15] Chung, K. L. and Rao, K. M. (1980). A new setting for potential theory. I. Ann. Inst. Fourier (Grenoble) 30 167–198.
  • [16] Chung, K. L. and Walsh, J. B. (2005). Markov Processes, Brownian Motion, and Time Symmetry, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 249. Springer, New York.
  • [17] Chung, K. L. and Zhao, Z. X. (1995). From Brownian Motion to Schrödinger’s Equation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312. Springer, Berlin.
  • [18] Cranston, M. and Zhao, Z. (1987). Conditional transformation of drift formula and potential theory for ${\frac{1}{2}}\Delta+b(\cdot)\cdot\nabla$. Comm. Math. Phys. 112 613–625.
  • [19] Durrett, R. (2005). Probability: Theory and Examples, 3rd ed. Thomson Learning, Belmont, CA.
  • [20] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York.
  • [21] Getoor, R. K. (1971). Duality of Lévy systems. Z. Wahrsch. Verw. Gebiete 19 257–270.
  • [22] Grigelionis, B. (1973). The relative compactness of sets of probability measures in $D[0,\infty)$. Lith. Math. J. 13 576–586.
  • [23] Jakubowski, T. (2002). The estimates for the Green function in Lipschitz domains for the symmetric stable processes. Probab. Math. Statist. 22 419–441.
  • [24] Kim, P. and Song, R. (2006). Two-sided estimates on the density of Brownian motion with singular drift. Illinois J. Math. 50 635–688 (electronic).
  • [25] Kim, P. and Song, R. (2007). Boundary Harnack principle for Brownian motions with measure-valued drifts in bounded Lipschitz domains. Math. Ann. 339 135–174.
  • [26] Kim, P. and Song, R. (2008). On dual processes of non-symmetric diffusions with measure-valued drifts. Stochastic Process. Appl. 118 790–817.
  • [27] Kulczycki, T. (1998). Intrinsic ultracontractivity for symmetric stable processes. Bull. Pol. Acad. Sci. Math. 46 325–334.
  • [28] Liao, M. (1984). Riesz representation and duality of Markov processes. Ph.D. dissertation, Dept. Mathematics, Stanford Univ.
  • [29] Liao, M. (1985). Riesz representation and duality of Markov processes. In Séminaire de Probabilités, XIX, 1983/84. Lecture Notes in Math. 1123 366–396. Springer, Berlin.
  • [30] Liu, L. Q. and Zhang, Y. P. (1990). Representation of conditional Markov processes. J. Math. (Wuhan) 10 1–12.
  • [31] Pop-Stojanović, Z. R. (1988). Continuity of excessive harmonic functions for certain diffusions. Proc. Amer. Math. Soc. 103 607–611.
  • [32] Schaefer, H. H. (1974). Banach Lattices and Positive Operators. Die Grundlehren der Mathematischen Wissenschaften 215 Springer, New York.
  • [33] Sharpe, M. (1988). General Theory of Markov Processes. Pure and Applied Mathematics 133. Academic Press, Boston, MA.
  • [34] Song, R. (2004). Estimates on the Dirichlet heat kernel of domains above the graphs of bounded $C^{1,1}$ functions. Glas. Mat. Ser. III 39 273–286.
  • [35] Song, R. and Wu, J.-M. (1999). Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168 403–427.
  • [36] Song, R. M. (1995). Feynman–Kac semigroup with discontinuous additive functionals. J. Theoret. Probab. 8 727–762.
  • [37] Shur, M. G. (1977). Dual Markov processes. Theory Probab. Appl. 22 264–278.