The Annals of Probability

T. E. Harris’ contributions to interacting particle systems and percolation

Thomas M. Liggett

Full-text: Open access

Abstract

Interacting particle systems and percolation have been among the most active areas of probability theory over the past half century. Ted Harris played an important role in the early development of both fields. This paper is a bird’s eye view of his work in these fields, and of its impact on later research in probability theory and mathematical physics.

Article information

Source
Ann. Probab., Volume 39, Number 2 (2011), 407-416.

Dates
First available in Project Euclid: 25 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.aop/1298669166

Digital Object Identifier
doi:10.1214/10-AOP593

Mathematical Reviews number (MathSciNet)
MR2789500

Zentralblatt MATH identifier
1213.60159

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Percolation contact processes exclusion processes correlation inequalities

Citation

Liggett, Thomas M. T. E. Harris’ contributions to interacting particle systems and percolation. Ann. Probab. 39 (2011), no. 2, 407--416. doi:10.1214/10-AOP593. https://projecteuclid.org/euclid.aop/1298669166


Export citation

References

  • [1] Arratia, R. (1983). The motion of a tagged particle in the simple symmetric exclusion system on Z. Ann. Probab. 11 362–373.
  • [2] van den Berg, J., Häggström, O. and Kahn, J. (2006). Some conditional correlation inequalities for percolation and related processes. Random Structures Algorithms 29 417–435.
  • [3] Bezuidenhout, C. and Grimmett, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462–1482.
  • [4] Bollobás, B. and Riorden, O. (2006). Percolation. Cambridge Univ. Press, New York.
  • [5] Borcea, J., Brändén, P. and Liggett, T. M. (2009). Negative dependence and the geometry of polynomials. J. Amer. Math. Soc. 22 521–567.
  • [6] Broadbent, S. R. and Hammersley, J. M. (1957). Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc. 53 629–641.
  • [7] Camia, F. and Newman, C. M. (2006). Two-dimensional critical percolation: The full scaling limit. Comm. Math. Phys. 268 1–38.
  • [8] Dobrushin, R. L. (1971). Markov processes with a large number of locally interacting components: Existence of a limit process and its ergodicity. Probl. Inf. Transm. 7 149–164.
  • [9] Durrett, R. (1991). A new method for proving the existence of phase transitions. In Spatial Stochastic Processes. Progress in Probability 19 141–169. Birkhäuser, Boston, MA.
  • [10] Fortuin, C. M., Kasteleyn, P. W. and Ginibre, J. (1971). Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 89–103.
  • [11] Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin.
  • [12] Griffiths, R. B. (1967). Correlations in Ising ferromagnets I. J. Math. Phys. 8 478–483.
  • [13] Grimmett, G. (1999). Percolation, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 321. Springer, Berlin.
  • [14] Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 13–20.
  • [15] Harris, T. E. (1965). Diffusion with “collisions” between particles. J. Appl. Probab. 2 323–338.
  • [16] Harris, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. Math. 9 66–89.
  • [17] Harris, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969–988.
  • [18] Harris, T. E. (1976). On a class of set-valued Markov processes. Ann. Probab. 4 175–194.
  • [19] Harris, T. E. (1977). A correlation inequality for Markov processes in partially ordered state spaces. Ann. Probab. 5 451–454.
  • [20] Harris, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355–378.
  • [21] Harris, T. E. (1991). Interacting systems, stirrings, and flows. In Random Walks, Brownian Motion, and Interacting Particle Systems. Progress in Probability 28 283–293. Birkhäuser, Boston, MA.
  • [22] Holley, R. (1970). A class of interactions in an infinite particle system. Adv. Math. 5 291–309.
  • [23] Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals ½. Comm. Math. Phys. 74 41–59.
  • [24] Kipnis, C. and Varadhan, S. R. S. (1986). Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 1–19.
  • [25] Lawler, G. F. (2009). Conformal invariance and 2D statistical physics. Bull. Amer. Math. Soc. (N.S.) 46 35–54.
  • [26] Lee, W. C. (1974). Random stirring of the real line. Ann. Probab. 2 580–592.
  • [27] Liggett, T. M. (1972). Existence theorems for infinite particle systems. Trans. Amer. Math. Soc. 165 471–481.
  • [28] Liggett, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New York.
  • [29] Liggett, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 324. Springer, Berlin.
  • [30] Liggett, T. M. (2006). Conditional association and spin systems. ALEA Lat. Am. J. Probab. Math. Stat. 1 1–19.
  • [31] Liggett, T. M., Schinazi, R. B. and Schweinsberg, J. (2008). A contact process with mutations on a tree. Stochastic Process. Appl. 118 319–332.
  • [32] Liggett, T. M. and Steif, J. E. (2006). Stochastic domination: The contact process, Ising models and FKG measures. Ann. Inst. H. Poincaré Probab. Statist. 42 223–243.
  • [33] Mossel, E. and Roch, S. (2007). On the submodularity of influence in social networks. In STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing 128–134. ACM, New York.
  • [34] Sethuraman, S., Varadhan, S. R. S. and Yau, H.-T. (2000). Diffusive limit of a tagged particle in asymmetric simple exclusion processes. Comm. Pure Appl. Math. 53 972–1006.
  • [35] Smirnov, S. (2006). Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians, Vol. II 1421–1451. Eur. Math. Soc., Zürich.
  • [36] Spitzer, F. (1970). Interaction of Markov processes. Adv. Math. 5 246–290.
  • [37] Varadhan, S. R. S. (1995). Self-diffusion of a tagged particle in equilibrium for asymmetric mean zero random walk with simple exclusion. Ann. Inst. H. Poincaré Probab. Statist. 31 273–285.