The Annals of Probability

Scaling limits of random planar maps with large faces

Jean-François Le Gall and Grégory Miermont

Full-text: Open access


We discuss asymptotics for large random planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with index α∈(1, 2). When the number n of vertices of the map tends to infinity, the asymptotic behavior of distances from a distinguished vertex is described by a random process called the continuous distance process, which can be constructed from a centered stable process with no negative jumps and index α. In particular, the profile of distances in the map, rescaled by the factor n−1∕2α, converges to a random measure defined in terms of the distance process. With the same rescaling of distances, the vertex set viewed as a metric space converges in distribution as n→∞, at least along suitable subsequences, toward a limiting random compact metric space whose Hausdorff dimension is equal to 2α.

Article information

Ann. Probab., Volume 39, Number 1 (2011), 1-69.

First available in Project Euclid: 3 December 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05C80: Random graphs [See also 60B20] 60F17: Functional limit theorems; invariance principles 60G51: Processes with independent increments; Lévy processes

Random planar map scaling limit graph distance profile of distances stable distribution stable tree Gromov–Hausdorff convergence Hausdorff dimension


Le Gall, Jean-François; Miermont, Grégory. Scaling limits of random planar maps with large faces. Ann. Probab. 39 (2011), no. 1, 1--69. doi:10.1214/10-AOP549.

Export citation


  • [1] Ambjørn, J., Durhuus, B. and Jonsson, T. (1997). Quantum Geometry: A Statistical Field Theory Approach. Cambridge Univ. Press, Cambridge.
  • [2] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge.
  • [3] Bettinelli, J. (2010). Scaling limits for random quadrangulations of positive genus. Preprint. Univ. Paris-Sud. Available at arXiv:1002.3682.
  • [4] Bouttier, J., Di Francesco, P. and Guitter, E. (2004). Planar maps as labeled mobiles. Electron. J. Combin. 11 27 pp. (electronic).
  • [5] Burago, D., Burago, Y. and Ivanov, S. (2001). A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI.
  • [6] Carroll, S. M., Ortiz, M. E. and Taylor, W. (1996). Spin/disorder correlations and duality in the c=½ string. Nuclear Phys. B 468 420–438.
  • [7] Chassaing, P. and Schaeffer, G. (2004). Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 161–212.
  • [8] Dellacherie, C. and Meyer, P.-A. (1980). Probabilités et Potentiel. Chapitres V à VIII, Revised ed. Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics] 1385. Hermann, Paris.
  • [9] Duplantier, B. (2004). Conformal fractal geometry & boundary quantum gravity. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2. Proceedings of Symposia in Pure Mathematics 72 365–482. Amer. Math. Soc., Providence, RI.
  • [10] Duplantier, B. and Sheffield, S. (2008). Liouville quantum gravity and KPZ. Preprint. CEA/Saclay. Available at arXiv:0808.1560.
  • [11] Duquesne, T. (2003). A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Probab. 31 996–1027.
  • [12] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 vi+147.
  • [13] Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2nd ed. Wiley, New York.
  • [14] Flajolet, P. and Sedgewick, R. (2009). Analytic Combinatorics. Cambridge Univ. Press, Cambridge.
  • [15] Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen.
  • [16] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer, Berlin.
  • [17] Kazakov, V. A. (1986). Ising model on a dynamical planar random lattice: Exact solution. Phys. Lett. A 119 140–144.
  • [18] Le Gall, J.-F. (2005). Random trees and applications. Probab. Surv. 2 245–311 (electronic).
  • [19] Le Gall, J.-F. (2007). The topological structure of scaling limits of large planar maps. Invent. Math. 169 621–670.
  • [20] Le Gall, J. F. (2010). Geodesics in large random planar maps and in the Brownian map. Acta Math. To appear. Available at arXiv:0804.3012.
  • [21] Marckert, J.-F. and Miermont, G. (2007). Invariance principles for random bipartite planar maps. Ann. Probab. 35 1642–1705.
  • [22] Marckert, J.-F. and Mokkadem, A. (2006). Limit of normalized quadrangulations: The Brownian map. Ann. Probab. 34 2144–2202.
  • [23] Miermont, G. (2006). An invariance principle for random planar maps. In Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities. 39–57. Assoc. Discrete Math. Theor. Comput. Sci., Nancy.
  • [24] Miermont, G. (2009). Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42 725–781.
  • [25] Miermont, G. and Weill, M. (2008). Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab. 13 79–106.
  • [26] Petrov, V. V. (1975). Sums of Independent Random Variables. Springer, New York.
  • [27] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin.
  • [28] Sheffield, S. (2009). Exploration trees and conformal loop ensembles. Duke Math. J. 147 79–129.
  • [29] Spitzer, F. (1976). Principles of Random Walks, 2nd ed. Graduate Texts in Mathematics 34. Springer, New York.