The Annals of Probability

Ergodic theory, Abelian groups and point processes induced by stable random fields

Parthanil Roy

Full-text: Open access

Abstract

We consider a point process sequence induced by a stationary symmetric α-stable (0<α<2) discrete parameter random field. It is easy to prove, following the arguments in the one-dimensional case in [Stochastic Process. Appl. 114 (2004) 191–210], that if the random field is generated by a dissipative group action then the point process sequence converges weakly to a cluster Poisson process. For the conservative case, no general result is known even in the one-dimensional case. We look at a specific class of stable random fields generated by conservative actions whose effective dimensions can be computed using the structure theorem of finitely generated Abelian groups. The corresponding point processes sequence is not tight, and hence needs to be properly normalized in order to ensure weak convergence. This weak limit is computed using extreme value theory and some counting techniques.

Article information

Source
Ann. Probab., Volume 38, Number 2 (2010), 770-793.

Dates
First available in Project Euclid: 9 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aop/1268143532

Digital Object Identifier
doi:10.1214/09-AOP495

Mathematical Reviews number (MathSciNet)
MR2642891

Zentralblatt MATH identifier
1204.60037

Subjects
Primary: 60G55: Point processes
Secondary: 60G60: Random fields 60G70: Extreme value theory; extremal processes 37A40: Nonsingular (and infinite-measure preserving) transformations

Keywords
Stable process random field point process random measure weak convergence extreme value theory ergodic theory group action

Citation

Roy, Parthanil. Ergodic theory, Abelian groups and point processes induced by stable random fields. Ann. Probab. 38 (2010), no. 2, 770--793. doi:10.1214/09-AOP495. https://projecteuclid.org/euclid.aop/1268143532


Export citation

References

  • Aaronson, J. (1997). An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Amer. Math. Soc., Providence, RI.
  • Balkema, G. and Embrechts, P. (2007). High Risk Scenarios and Extremes: A Geometric Approach. Eur. Math. Soc., Zürich.
  • Davis, R. A. and Hsing, T. (1995). Point process and partial sum convergence for weakly dependent random variables with infinite variance. Ann. Probab. 23 879–917.
  • Davis, R. and Resnick, S. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13 179–195.
  • De Loera, J. A. (2005). The many aspects of counting lattice points in polytopes. Math. Semesterber. 52 175–195.
  • Kallenberg, O. (1983). Random Measures, 3rd ed. Akademie-Verlag, Berlin.
  • Krengel, U. (1985). Ergodic Theorems. De Gruyter Studies in Mathematics 6. De Gruyter, Berlin.
  • Lang, S. (2002). Algebra, 3rd ed. Graduate Texts in Mathematics 211. Springer, New York.
  • Mori, T. (1977). Limit distributions of two-dimensional point processes generated by strong-mixing sequences. Yokohama Math. J. 25 155–168.
  • Neveu, J. (1977). Processus ponctuels. In École D’Été de Probabilités de Saint-Flour, VI—1976. Lecture Notes in Math. 598 249–445. Springer, Berlin.
  • Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York.
  • Resnick, S. I. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York.
  • Resnick, S. and Samorodnitsky, G. (2004). Point processes associated with stationary stable processes. Stochastic Process. Appl. 114 191–209.
  • Rosiński, J. (1995). On the structure of stationary stable processes. Ann. Probab. 23 1163–1187.
  • Rosiński, J. (2000). Decomposition of stationary α-stable random fields. Ann. Probab. 28 1797–1813.
  • Roy, P. (2008). Stable random fields. Ph.D. dissertation, School of Operations Research and Industrial Engineering, Cornell Univ., Ithaca, NY.
  • Roy, P. and Samorodnitsky, G. (2008). Stationary symmetric α-stable discrete parameter random fields. J. Theoret. Probab. 21 212–233.
  • Samorodnitsky, G. (2004). Extreme value theory, ergodic theory and the boundary between short memory and long memory for stationary stable processes. Ann. Probab. 32 1438–1468.
  • Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models With Infinite Variance. Chapman & Hall, New York.
  • Surgailis, D., Rosiński, J., Mandrekar, V. and Cambanis, S. (1993). Stable mixed moving averages. Probab. Theory Related Fields 97 543–558.