The Annals of Probability

Dynamical large deviations for the boundary driven weakly asymmetric exclusion process

Lorenzo Bertini, Claudio Landim, and Mustapha Mourragui

Full-text: Open access

Abstract

We consider the weakly asymmetric exclusion process on a bounded interval with particle reservoirs at the endpoints. The hydrodynamic limit for the empirical density, obtained in the diffusive scaling, is given by the viscous Burgers equation with Dirichlet boundary conditions. We prove the associated dynamical large deviations principle.

Article information

Source
Ann. Probab., Volume 37, Number 6 (2009), 2357-2403.

Dates
First available in Project Euclid: 16 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1258380792

Digital Object Identifier
doi:10.1214/09-AOP472

Mathematical Reviews number (MathSciNet)
MR2573561

Zentralblatt MATH identifier
1187.82083

Subjects
Primary: 82C22: Interacting particle systems [See also 60K35]
Secondary: 60F10: Large deviations 82C35: Irreversible thermodynamics, including Onsager-Machlup theory

Keywords
Exclusion process large deviations stationary nonequilibrium states

Citation

Bertini, Lorenzo; Landim, Claudio; Mourragui, Mustapha. Dynamical large deviations for the boundary driven weakly asymmetric exclusion process. Ann. Probab. 37 (2009), no. 6, 2357--2403. doi:10.1214/09-AOP472. https://projecteuclid.org/euclid.aop/1258380792


Export citation

References

  • [1] Benois, O. (1996). Large deviations for the occupation times of independent particle systems. Ann. Appl. Probab. 6 269–296.
  • [2] Benois, O., Kipnis, C. and Landim, C. (1995). Large deviations from the hydrodynamical limit of mean zero asymmetric zero range processes. Stochastic Process. Appl. 55 65–89.
  • [3] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2003). Large deviations for the boundary driven symmetric simple exclusion process. Math. Phys. Anal. Geom. 6 231–267.
  • [4] Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G. and Landim, C. (2006). Large deviation approach to nonequilibrium processes in stochastic lattice gases. Bull. Braz. Math. Soc. (N.S.) 37 611–643.
  • [5] Bertini, L., Gabrielli, D. and Landim, C. (2009). Strong asymmetric limit of the quasi-potential of the boundary driven weakly asymmetric exclusion process. Comm. Math. Phys. 289 311–334.
  • [6] Comets, F. (1986). Grandes déviations pour des champs de Gibbs sur Zd. C. R. Acad. Sci. Paris Sér. I Math. 303 511–513.
  • [7] De Masi, A., Presutti, E. and Scacciatelli, E. (1989). The weakly asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 25 1–38.
  • [8] Derrida, B. (2007). Nonequilibrium steady states: Fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 7 45.
  • [9] Derrida, B., Lebowitz, J. L. and Speer, E. R. (2002). Large deviation of the density profile in the steady state of the open symmetric simple exclusion process. J. Stat. Phys. 107 599–634.
  • [10] Derrida, B., Lebowitz, J. L. and Speer, E. R. (2003). Exact large deviation functional of a stationary open driven diffusive system: The asymmetric exclusion process. J. Stat. Phys. 110 775–810.
  • [11] Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Pure and Applied Mathematics 137. Academic Press, Boston, MA.
  • [12] Donsker, M. D. and Varadhan, S. R. S. (1989). Large deviations from a hydrodynamic scaling limit. Comm. Pure Appl. Math. 42 243–270.
  • [13] Enaud, C. and Derrida, B. (2004). Large deviation functional of the weakly asymmetric exclusion process. J. Stat. Phys. 114 537–562.
  • [14] Eyink, G., Lebowitz, J. L. and Spohn, H. (1990). Hydrodynamics of stationary nonequilibrium states for some stochastic lattice gas models. Comm. Math. Phys. 132 253–283.
  • [15] Eyink, G., Lebowitz, J. L. and Spohn, H. (1991). Lattice gas models in contact with stochastic reservoirs: Local equilibrium and relaxation to the steady state. Comm. Math. Phys. 140 119–131.
  • [16] Gärtner, J. (1988). Convergence towards Burgers’ equation and propagation of chaos for weakly asymmetric exclusion processes. Stochastic Process. Appl. 27 233–260.
  • [17] Kipnis, C. and Landim, C. (1999). Scaling Limits of Interacting Particle Systems. Springer, Berlin.
  • [18] Kipnis, C., Landim, C. and Olla, S. (1995). Macroscopic properties of a stationary nonequilibrium distribution for a nongradient interacting particle system. Ann. Inst. H. Poincaré Probab. Statist. 31 191–221.
  • [19] Kipnis, C., Marchioro, C. and Presutti, E. (1982). Heat flow in an exactly solvable model. J. Stat. Phys. 27 65–74.
  • [20] Kipnis, C., Olla, S. and Varadhan, S. R. S. (1989). Hydrodynamics and large deviations for simple exclusion processes. Comm. Pure Appl. Math. 42 115–137.
  • [21] Landim, C., Olla, S. and Volchan, S. B. (1998). Driven tracer particle in one-dimensional symmetric simple exclusion. Comm. Math. Phys. 192 287–307.
  • [22] Lanford, O. E. (1973). Entropy and Equilibrium States is Classical Statistical Mechanics. Lecture Notes in Physics 20. Springer, Berlin.
  • [23] Mourragui, M. and Orlandi, E. (2007). Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential. Ann. Inst. H. Poincaré, Probab. Statist. 43 677–715.
  • [24] Olla, S. (1988). Large deviations for Gibbs random fields. Probab. Theory Related Fields 77 343–357.
  • [25] Protter, M. H. and Weinberger, H. F. (1984). Maximum Principles in Differential Equations. Springer, New York.
  • [26] Quastel, J. (1995). Large deviations from a hydrodynamic scaling limit for a nongradient system. Ann. Probab. 23 724–742.
  • [27] Quastel, J., Rezakhanlou, F. and Varadhan, S. R. S. (1999). Large deviations for the symmetric simple exclusion process in dimensions d≥3. Probab. Theory Related Fields 113 1–84.
  • [28] Simon, J. (1987). Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. (4) 146 65–96.
  • [29] Spohn, H. and Yau, H.-T. (1995). Bulk diffusivity of lattice gases close to criticality. J. Stat. Phys. 79 231–241.
  • [30] Varadhan, S. R. S. (1984). Large Deviations and Applications. SIAM, Philadelphia.
  • [31] Varadhan, S. R. S. and Yau, H.-T. (1997). Diffusive limit of lattice gas with mixing conditions. Asian J. Math. 1 623–678.
  • [32] Zeidler, E. (1990). Nonlinear Functional Analysis and Its Applications. II/A. Springer, Berlin.