The Annals of Probability

Small deviations of general Lévy processes

Frank Aurzada and Steffen Dereich

Full-text: Open access

Abstract

We study the small deviation problem logℙ(sup t∈[0, 1]|Xt|≤ɛ), as ɛ→0, for general Lévy processes X. The techniques enable us to determine the asymptotic rate for general real-valued Lévy processes, which we demonstrate with many examples.

As a particular consequence, we show that a Lévy process with nonvanishing Gaussian component has the same (strong) asymptotic small deviation rate as the corresponding Brownian motion.

Article information

Source
Ann. Probab., Volume 37, Number 5 (2009), 2066-2092.

Dates
First available in Project Euclid: 21 September 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1253539864

Digital Object Identifier
doi:10.1214/09-AOP457

Mathematical Reviews number (MathSciNet)
MR2561441

Zentralblatt MATH identifier
1187.60035

Subjects
Primary: 60G51: Processes with independent increments; Lévy processes

Keywords
Small deviations small ball problem lower tail probability Lévy process Esscher transform

Citation

Aurzada, Frank; Dereich, Steffen. Small deviations of general Lévy processes. Ann. Probab. 37 (2009), no. 5, 2066--2092. doi:10.1214/09-AOP457. https://projecteuclid.org/euclid.aop/1253539864


Export citation

References

  • [1] Alvarez-Andrade, S. (1998). Small deviations for the Poisson process. Statist. Probab. Lett. 37 195–201.
  • [2] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc. 6 170–176.
  • [3] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge.
  • [4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Encyclopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge.
  • [5] Borovkov, A. A. and Mogulskii, A. A. (1991). On probabilities of small deviations for stochastic processes [translation of Trudy Inst. Mat. (Novosibirsk) 13 (1989), Asimptot. Analiz Raspred. Sluch. Protsess., 147–168; MR1037254 (91e:60089)]. Siberian Adv. Math. 1 39–63.
  • [6] Ishikawa, Y. (2002). Small deviations property and its application. In Second MaphySto Confecence on Lévy Processes: Theory and Application 22 149–154. MaPhySto Publ., Aarhus.
  • [7] Kuelbs, J. and Li, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133–157.
  • [8] Li, W. V. and Linde, W. (1999). Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27 1556–1578.
  • [9] Li, W. V. and Shao, Q.-M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statist. 19 533–597. North-Holland, Amsterdam.
  • [10] Lifshits, M. A. (1999). Asymptotic behavior of small ball probabilities. In: Probab. Theory and Math. Statist. Proc. VII International Vilnius Conference 453–468. VSP/TEV, Vilnius.
  • [11] Lifshits, M. A. Bibliography on small deviation probabilities. Available at http://www.proba.jussieu.fr/pageperso/smalldev/biblio.html.
  • [12] Lifshits, M. A. and Linde, W. (2002). Approximation and entropy numbers of Volterra operators with application to Brownian motion. Mem. Amer. Math. Soc. 157 1–87.
  • [13] Lifshits, M. and Simon, T. (2005). Small deviations for fractional stable processes. Ann. Inst. H. Poincaré Probab. Statist. 41 725–752.
  • [14] Linde, W. and Shi, Z. (2004). Evaluating the small deviation probabilities for subordinated Lévy processes. Stochastic Process. Appl. 113 273–287.
  • [15] Linde, W. and Zipfel, P. (2008). Small deviation of subordinated processes over compact sets. Probab. Math. Statist. 28 281–304.
  • [16] Mogulskii, A. A. (1974). Small deviations in the space of trajectories. Teor. Verojatnost. i Primenen. 19 755–765.
  • [17] Rosiński, J. (2007). Tempering stable processes. Stochastic Process. Appl. 117 677–707.
  • [18] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge.
  • [19] Simon, T. (2001). Sur les petites déviations d’un processus de Lévy. Potential Anal. 14 155–173.
  • [20] Simon, T. (2003). Small deviations in p-variation for multidimensional Lévy processes. J. Math. Kyoto Univ. 43 523–565.
  • [21] Simon, T. (2007). Small deviations of non-Gaussian processes. Theory Stoch. Process. 13 272–280.
  • [22] Shmileva, E. (2006). Small ball probabilities for jump Lévy processes from the Wiener domain of attraction. Statist. Probab. Lett. 76 1873–1881.
  • [23] Taylor, S. J. (1967). Sample path properties of a transient stable process. J. Math. Mech. 16 1229–1246.