The Annals of Probability

Gaussian processes, kinematic formulae and Poincaré’s limit

Jonathan E. Taylor and Robert J. Adler

Full-text: Open access

Abstract

We consider vector valued, unit variance Gaussian processes defined over stratified manifolds and the geometry of their excursion sets. In particular, we develop an explicit formula for the expectation of all the Lipschitz–Killing curvatures of these sets. Whereas our motivation is primarily probabilistic, with statistical applications in the background, this formula has also an interpretation as a version of the classic kinematic fundamental formula of integral geometry. All of these aspects are developed in the paper.

Particularly novel is the method of proof, which is based on a an approximation to the canonical Gaussian process on the n-sphere. The n→∞ limit, which gives the final result, is handled via recent extensions of the classic Poincaré limit theorem.

Article information

Source
Ann. Probab., Volume 37, Number 4 (2009), 1459-1482.

Dates
First available in Project Euclid: 21 July 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1248182144

Digital Object Identifier
doi:10.1214/08-AOP439

Mathematical Reviews number (MathSciNet)
MR2546751

Zentralblatt MATH identifier
1172.60006

Subjects
Primary: 60G15: Gaussian processes 60G60: Random fields 53A17: Kinematics 58A05: Differentiable manifolds, foundations
Secondary: 60G17: Sample path properties 62M40: Random fields; image analysis 60G70: Extreme value theory; extremal processes

Keywords
Gaussian fields kinematic formulae excursion sets Poincaré’s limit Euler characteristic intrinsic volumes geometry

Citation

Taylor, Jonathan E.; Adler, Robert J. Gaussian processes, kinematic formulae and Poincaré’s limit. Ann. Probab. 37 (2009), no. 4, 1459--1482. doi:10.1214/08-AOP439. https://projecteuclid.org/euclid.aop/1248182144


Export citation

References

  • [1] Adler, R. J. (1981). The Geometry of Random Fields. Wiley, Chichester.
  • [2] Adler, R. J. (2000). On excursion sets, tube formulas and maxima of random fields. Ann. Appl. Probab. 10 1–74.
  • [3] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer, New York.
  • [4] Adler, R. J., Taylor, J. E. and Worsley, K. J. Applications of Random Fields and Geometry: Foundations and Case Studies. In preparation. Available at http://ie.technion.ac.il/~radler/publications.html.
  • [5] Bernig, A. and Bröcker, L. (2002). Lipschitz–Killing invariants. Math. Nachr. 245 5–25.
  • [6] Bröcker, L. and Kuppe, M. (2000). Integral geometry of tame sets. Geom. Dedicata 82 285–323.
  • [7] Diaconis, P. and Freedman, D. (1987). A dozen de Finetti-style results in search of a theory. Ann. Inst. H. Poincaré Probab. Statist. 23 397–423.
  • [8] Diaconis, P. W., Eaton, M. L. and Lauritzen, S. L. (1992). Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist. 19 289–315.
  • [9] Federer, H. (1969). Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften 153. Springer, New York.
  • [10] Goresky, M. and MacPherson, R. (1988). Stratified Morse Theory. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 14. Springer, Berlin.
  • [11] Gray, A. (1990). Tubes. Addison-Wesley, Redwood City, CA.
  • [12] Hug, D. and Schneider, R. (2002). Kinematic and Crofton formulae of integral geometry: Recent variants and extensions. In Homenatge al Professor Luís Santaló i Sors ( C. Barceló i Vidal, ed.) 51–80. Univ. de Girona, Girona.
  • [13] Klain, D. A. and Rota, G.-C. (1997). Introduction to Geometric Probability. Cambridge Univ. Press, Cambridge.
  • [14] Pflaum, M. J. (2001). Analytic and Geometric Study of Stratified Spaces. Lecture Notes in Mathematics 1768. Springer, Berlin.
  • [15] Rice, S. O. (1939). The distribution of the maxima of a random curve. Amer. J. Math. 61 409–416.
  • [16] Rice, S. O. (1945). Mathematical analysis of random noise. Bell System Tech. J. 24 46–156.
  • [17] Santaló, L. A. (1976). Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and Its Applications 1. Addison-Wesley, Reading, MA.
  • [18] Schneider, R. (1993). Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge.
  • [19] Siegmund, D. O. and Worsley, K. J. (1995). Testing for a signal with unknown location and scale in a stationary Gaussian random field. Ann. Statist. 23 608–639.
  • [20] Taylor, J. E. (2006). A Gaussian kinematic formula. Ann. Probab. 34 122–158.
  • [21] Taylor, J. E. and Adler, R. J. (2003). Euler characteristics for Gaussian fields on manifolds. Ann. Probab. 31 533–563.
  • [22] Taylor, J., Takemura, A. and Adler, R. J. (2005). Validity of the expected Euler characteristic heuristic. Ann. Probab. 33 1362–1396.
  • [23] Weyl, H. (1939). On the volume of tubes. Amer. J. Math. 61 461–472.
  • [24] Worsley, K. J. (1994). Local maxima and the expected Euler characteristic of excursion sets of χ2, F and t fields. Adv. in Appl. Probab. 26 13–42.
  • [25] Worsley, K. J. (1995). Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. in Appl. Probab. 27 943–959.
  • [26] Worsley, K. J. (1995). Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Statist. 23 640–669.
  • [27] Worsley, K. J. (1997). The geometry of random images. Chance 9 27–40.
  • [28] Worsley, K. J. (2001). Testing for signals with unknown location and scale in a χ2 random field, with an application to fMRI. Adv. in Appl. Probab. 33 773–793.