Annals of Probability

Hausdorff measure of arcs and Brownian motion on Brownian spatial trees

David A. Croydon

Full-text: Open access

Abstract

A Brownian spatial tree is defined to be a pair $(\mathcal{T},\phi)$, where $\mathcal{T}$ is the rooted real tree naturally associated with a Brownian excursion and φ is a random continuous function from $\mathcal{T}$ into ℝd such that, conditional on $\mathcal{T}$, φ maps each arc of $\mathcal{T}$ to the image of a Brownian motion path in ℝd run for a time equal to the arc length. It is shown that, in high dimensions, the Hausdorff measure of arcs can be used to define an intrinsic metric $d_{\mathcal{S}}$ on the set $\mathcal{S}:=\phi(\mathcal{T})$. Applications of this result include the recovery of the spatial tree $(\mathcal{T},\phi)$ from the set $\mathcal{S}$ alone, which implies in turn that a Dawson–Watanabe super-process can be recovered from its range. Furthermore, $d_{\mathcal{S}}$ can be used to construct a Brownian motion on $\mathcal{S}$, which is proved to be the scaling limit of simple random walks on related discrete structures. In particular, a limiting result for the simple random walk on the branching random walk is obtained.

Article information

Source
Ann. Probab., Volume 37, Number 3 (2009), 946-978.

Dates
First available in Project Euclid: 19 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.aop/1245434025

Digital Object Identifier
doi:10.1214/08-AOP425

Mathematical Reviews number (MathSciNet)
MR2537546

Zentralblatt MATH identifier
1219.60052

Subjects
Primary: 60G57: Random measures
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments

Keywords
Spatial tree Dawson–Watanabe super-process Hausdorff measure diffusion random environment random walk scaling limit branching random walk

Citation

Croydon, David A. Hausdorff measure of arcs and Brownian motion on Brownian spatial trees. Ann. Probab. 37 (2009), no. 3, 946--978. doi:10.1214/08-AOP425. https://projecteuclid.org/euclid.aop/1245434025


Export citation

References

  • [1] Aldous, D. (1991). The continuum random tree. I. Ann. Probab. 19 1–28.
  • [2] Aldous, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis (Durham, 1990). London Mathematical Society Lecture Note Series 167 23–70. Cambridge Univ. Press, Cambridge.
  • [3] Aldous, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289.
  • [4] Aldous, D. (1993). Tree-based models for random distribution of mass. J. Statist. Phys. 73 625–641.
  • [5] Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York.
  • [6] Burdzy, K. (1993). Some path properties of iterated Brownian motion. In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992). Progress in Probability 33 67–87. Birkhäuser, Boston, MA.
  • [7] Ciesielski, Z. and Taylor, S. J. (1962). First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc. 103 434–450.
  • [8] Croydon, D. A. (2008). Convergence of simple random walks on random discrete trees to Brownian motion on the continuum random tree. Ann. Inst. H. Poincaré Probab. Statist. 44 987–1019.
  • [9] Croydon, D. A. (2008). Volume growth and heat kernel estimates for the continuum random tree. Probab. Theory Related Fields 140 207–238.
  • [10] Croydon, D. and Hambly, B. (2008). Self-similarity and spectral asymptotics for the continuum random tree. Stochastic Process. Appl. 118 730–754.
  • [11] Dawson, D. A., Iscoe, I. and Perkins, E. A. (1989). Super-Brownian motion: Path properties and hitting probabilities. Probab. Theory Related Fields 83 135–205.
  • [12] Dawson, D. A. and Perkins, E. A. (1991). Historical Processes. Memoirs of the American Mathematical Society 93. Amer. Math. Soc., Providence, RI.
  • [13] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 1–147.
  • [14] Duquesne, T. and Le Gall, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 553–603.
  • [15] Duquesne, T. and Le Gall, J.-F. (2006). The Hausdorff measure of stable trees. ALEA Lat. Am. J. Probab. Math. Stat. 1 393–415 (electronic).
  • [16] Evans, S. N., Pitman, J. and Winter, A. (2006). Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 81–126.
  • [17] Janson, S. and Marckert, J.-F. (2005). Convergence of discrete snakes. J. Theoret. Probab. 18 615–647.
  • [18] Kigami, J. (1995). Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal. 128 48–86.
  • [19] Kigami, J. (2001). Analysis on Fractals. Cambridge Tracts in Mathematics 143. Cambridge Univ. Press, Cambridge.
  • [20] Le Gall, J.-F. (1999a). The Hausdorff measure of the range of super-Brownian motion. In Perplexing Problems in Probability. Progress in Probability 44 285–314. Birkhäuser, Boston, MA.
  • [21] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel.
  • [22] Le Gall, J.-F. (2006). Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15 35–62.
  • [23] Le Gall, J.-F. and Perkins, E. A. (1995). The Hausdorff measure of the support of two-dimensional super-Brownian motion. Ann. Probab. 23 1719–1747.
  • [24] Marckert, J.-F. and Mokkadem, A. (2003). States spaces of the snake and its tour—convergence of the discrete snake. J. Theoret. Probab. 16 1015–1046 (2004).
  • [25] Mattila, P. and Mauldin, R. D. (1997). Measure and dimension functions: Measurability and densities. Math. Proc. Cambridge Philos. Soc. 121 81–100.
  • [26] Perkins, E. (2002). Dawson–Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics (Saint-Flour, 1999). Lecture Notes in Math. 1781 125–324. Springer, Berlin.
  • [27] Slade, G. (2006). The Lace Expansion and Its Applications. Lecture Notes in Math. 1879. Springer, Berlin. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6–24, 2004, edited and with a foreword by Jean Picard.
  • [28] Tribe, R. (1994). A representation for super Brownian motion. Stochastic Process. Appl. 51 207–219.