The Annals of Probability

Groups of Transformations without Finite Invariant Measures Have Strong Generators of Size 2

Amy J. Kuntz

Full-text: Open access

Abstract

A size 2 generator of a measure space $(\mathbf{X}, \mathscr{F}, p)$ under a set of $\mathbf{S}$ of transformation of $X$ is a partition $\{A, A^c\}$ of $X$ such that $\mathscr{F}$ is the smallest $\sigma$-algebra containing $\{s^{-1}A: s\in S\}$ up to sets of $p$-measure zero. Let $S$ be a semigroup of invertible nonsingular measurable transformations on a separable measure space $(X, \mathscr{F}, p)$ with $p(X) = 1$. Suppose that $S$ does not preserve any finite invariant measure absolutely continuous with respect to $p$. Then $\mathscr{F}$ has a size 2 generator $\{A, A^c\}$ and the orbit of $A$ under $S$ is dense in $\mathscr{F}$.

Article information

Source
Ann. Probab., Volume 2, Number 1 (1974), 143-146.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176996759

Digital Object Identifier
doi:10.1214/aop/1176996759

Mathematical Reviews number (MathSciNet)
MR355004

Zentralblatt MATH identifier
0276.28017

JSTOR
links.jstor.org

Subjects
Primary: 28A65
Secondary: 20M20: Semigroups of transformations, etc. [See also 47D03, 47H20, 54H15]

Keywords
Size-2 generator weakly wandering sets no finite invariant measure

Citation

Kuntz, Amy J. Groups of Transformations without Finite Invariant Measures Have Strong Generators of Size 2. Ann. Probab. 2 (1974), no. 1, 143--146. doi:10.1214/aop/1176996759. https://projecteuclid.org/euclid.aop/1176996759


Export citation