The Annals of Probability

Some Problems on Random Intervals and Annihilating Particles

P. Erdos and P. Ney

Full-text: Open access

Abstract

Particles perform independent random walks on the integers, and are annihilated if they cross paths or land at the same point. The problem is to determine whether the origin is hit infinitely often. The answer is shown to depend on the initial distribution of particles in accordance with a "log log law." Several equivalent models are mentioned.

Article information

Source
Ann. Probab., Volume 2, Number 5 (1974), 828-839.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176996551

Digital Object Identifier
doi:10.1214/aop/1176996551

Mathematical Reviews number (MathSciNet)
MR373068

Zentralblatt MATH identifier
0297.60052

JSTOR
links.jstor.org

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60C05: Combinatorial probability

Keywords
Random walk interacting particle processes random intervals combinatorial probability

Citation

Erdos, P.; Ney, P. Some Problems on Random Intervals and Annihilating Particles. Ann. Probab. 2 (1974), no. 5, 828--839. doi:10.1214/aop/1176996551. https://projecteuclid.org/euclid.aop/1176996551


Export citation