The Annals of Probability

On the Rate of Convergence in the Central Limit Theorem in Two Dimensions and its Application

M. H. Afghahi

Full-text: Open access

Abstract

This paper provides a generalization of the classical Berry-Esseen theorem in two dimensions. For i.i.d. random variables $\eta_1, \eta_2, \cdots, \eta_r, \cdots$ and real numbers $a_1, a_2, \cdots, a_r, \cdots$ and $b_1, b_2, \cdots, b_r, \cdots$ with $E(\eta_r) = 0, E(\eta_r^2) = 1, |a_r| \leqq 1$ and $|b_r| \leqq 1$, let $A_n^2 = \sum^n_{r=1} a_r^2, B_n^2 = \sum^n_{r=1} b_r^2$ and $S_n = (\sum^n_{r=1} a_r \eta_r/A_n, \sum^n_{r=1} b_r \eta_r/B_n)$. The main result concerns the rate of convergence of the distribution function of $S_n$ to the corresponding normal distribution function without assuming the existence of third moments. As an application of this result a theorem of P. Erdos and A. C. Offord is generalized.

Article information

Source
Ann. Probab., Volume 3, Number 5 (1975), 802-814.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176996267

Digital Object Identifier
doi:10.1214/aop/1176996267

Mathematical Reviews number (MathSciNet)
MR385974

Zentralblatt MATH identifier
0335.60020

JSTOR
links.jstor.org

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 10K99

Keywords
Central limit theorem rate of convergence Berry-Esseen theorem two dimensions probabilistic number theory

Citation

Afghahi, M. H. On the Rate of Convergence in the Central Limit Theorem in Two Dimensions and its Application. Ann. Probab. 3 (1975), no. 5, 802--814. doi:10.1214/aop/1176996267. https://projecteuclid.org/euclid.aop/1176996267


Export citation