The Annals of Probability

On Hitting Probabilities for an Annihilating Particle Model

Diane Schwartz

Full-text: Open access

Abstract

Erdos and Ney introduced a discrete time annihilating particle model on the integer lattice and conjectured that, starting from an initial state of a particle at each lattice site except the origin, the probability a particle ever hits the origin is 1. This paper proves this conjecture for the continuous time version of their model.

Article information

Source
Ann. Probab., Volume 6, Number 3 (1978), 398-403.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176995526

Digital Object Identifier
doi:10.1214/aop/1176995526

Mathematical Reviews number (MathSciNet)
MR494573

Zentralblatt MATH identifier
0404.60098

JSTOR
links.jstor.org

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Interacting particle systems annihilation

Citation

Schwartz, Diane. On Hitting Probabilities for an Annihilating Particle Model. Ann. Probab. 6 (1978), no. 3, 398--403. doi:10.1214/aop/1176995526. https://projecteuclid.org/euclid.aop/1176995526


Export citation