The Annals of Probability

Hunt's Hypothesis (H) and Getoor's Conjecture

Joseph Glover and Murali Rao

Full-text: Open access

Abstract

A large class of Markov processes satisfying Hunt's hypothesis (H) is displayed. In particular, if $\Phi$ is a Levy-Khinchin exponent, then the Levy process with exponent $\Phi^\alpha (0 < \alpha < 1)$ satisfies (H). That is, every semipolar set is polar.

Article information

Source
Ann. Probab., Volume 14, Number 3 (1986), 1085-1087.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176992463

Digital Object Identifier
doi:10.1214/aop/1176992463

Mathematical Reviews number (MathSciNet)
MR841609

Zentralblatt MATH identifier
0602.60063

JSTOR
links.jstor.org

Subjects
Primary: 60J45: Probabilistic potential theory [See also 31Cxx, 31D05]
Secondary: 31D05: Axiomatic potential theory

Keywords
Hunt's hypothesis (H) Levy processes semipolar sets polar sets subordinators

Citation

Glover, Joseph; Rao, Murali. Hunt's Hypothesis (H) and Getoor's Conjecture. Ann. Probab. 14 (1986), no. 3, 1085--1087. doi:10.1214/aop/1176992463. https://projecteuclid.org/euclid.aop/1176992463


Export citation