The Annals of Probability

Recurrence of Random Walks on Completely Simple Semigroups

P. B. Cerrito

Full-text: Open access

Abstract

A completely simple semigroup has the form $S = X \times G \times Y$. This paper considers the relationship between $S$ and $G$. Given a recurrent random walk on $S$ we determine under what conditions $G$ is also recurrent and conversely. In particular we generalize the results of Larisse.

Article information

Source
Ann. Probab., Volume 14, Number 4 (1986), 1411-1417.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176992382

Digital Object Identifier
doi:10.1214/aop/1176992382

Mathematical Reviews number (MathSciNet)
MR866362

Zentralblatt MATH identifier
0606.60013

JSTOR
links.jstor.org

Subjects
Primary: 60B10: Convergence of probability measures
Secondary: 60B15: Probability measures on groups or semigroups, Fourier transforms, factorization

Keywords
Random walk topological semigroup

Citation

Cerrito, P. B. Recurrence of Random Walks on Completely Simple Semigroups. Ann. Probab. 14 (1986), no. 4, 1411--1417. doi:10.1214/aop/1176992382. https://projecteuclid.org/euclid.aop/1176992382


Export citation