The Annals of Probability

A Zero or One Law for One Dimensional Random Walks in Random Environments

Enrique D. Andjel

Full-text: Open access

Abstract

We prove a zero or one law for one dimensional random walks in random environments for which the probability of making jumps of size $n$ decays exponentially. As an application we conclude that these random walks are recurrent if the distribution of the random environment is symmetric.

Article information

Source
Ann. Probab., Volume 16, Number 2 (1988), 722-729.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176991783

Digital Object Identifier
doi:10.1214/aop/1176991783

Mathematical Reviews number (MathSciNet)
MR929074

Zentralblatt MATH identifier
0642.60022

JSTOR
links.jstor.org

Subjects
Primary: 60K99: None of the above, but in this section
Secondary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces)

Keywords
Random walk in random environment zero or one law harmonic functions recurrence

Citation

Andjel, Enrique D. A Zero or One Law for One Dimensional Random Walks in Random Environments. Ann. Probab. 16 (1988), no. 2, 722--729. doi:10.1214/aop/1176991783. https://projecteuclid.org/euclid.aop/1176991783


Export citation