The Annals of Probability

Occupation Time Large Deviations for the Symmetric Simple Exclusion Process

C. Landim

Full-text: Open access

Abstract

We obtain the decay rate of the large deviation probabilities of occupation time for the symmetric simple exclusion process. Furthermore, in dimension $d \neq 2$, we prove a large deviation principle for the occupation time. To obtain these results, we prove hydrodynamical limits for the weakly asymmetric simple exclusion process and we prove a large deviation principle for the empirical density for the symmetric simple exclusion process.

Article information

Source
Ann. Probab., Volume 20, Number 1 (1992), 206-231.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176989925

Digital Object Identifier
doi:10.1214/aop/1176989925

Mathematical Reviews number (MathSciNet)
MR1143419

Zentralblatt MATH identifier
0751.60098

JSTOR
links.jstor.org

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Infinite particle system exclusion process large deviations hydrodynamical limit

Citation

Landim, C. Occupation Time Large Deviations for the Symmetric Simple Exclusion Process. Ann. Probab. 20 (1992), no. 1, 206--231. doi:10.1214/aop/1176989925. https://projecteuclid.org/euclid.aop/1176989925


Export citation