Open Access
October, 1992 Frechet Differentiability, $p$-Variation and Uniform Donsker Classes
R. M. Dudley
Ann. Probab. 20(4): 1968-1982 (October, 1992). DOI: 10.1214/aop/1176989537

Abstract

Differentiability of functionals of the empirical distribution function is extended. The supremum norm is replaced by $p$-variation seminorms, which are the $p$th roots of suprema of sums of $p$th powers of absolute increments of a function over nonoverlapping intervals. Frechet derivatives often exist for such norms when they do not for the supremum norm. For $1 < q < 2$, classes of functions uniformly bounded in $q$-variation are universal and uniform Donsker classes: The central limit theorem for empirical measures holds with respect to uniform convergence over such a class, also uniformly over all probability laws on the line. The integral $\int F dG$ was defined by L. C. Young if $F$ and $G$ are of bounded $p$- and $q$-variation respectively, where $p^{-1} + q^{-1} > 1$. Thus the normalized empirical distribution function $n^{1/2}(F_n - F)$ is with high probability in sets of uniformly bounded $p$-variation for any $p > 2$, uniformly in $n$.

Citation

Download Citation

R. M. Dudley. "Frechet Differentiability, $p$-Variation and Uniform Donsker Classes." Ann. Probab. 20 (4) 1968 - 1982, October, 1992. https://doi.org/10.1214/aop/1176989537

Information

Published: October, 1992
First available in Project Euclid: 19 April 2007

zbMATH: 0778.60026
MathSciNet: MR1188050
Digital Object Identifier: 10.1214/aop/1176989537

Subjects:
Primary: 60F17
Secondary: 26A42 , 26A45 , 62G30

Keywords: L. C. Young integral , Riemann-Stieltjes integral , Wilcoxon statistics

Rights: Copyright © 1992 Institute of Mathematical Statistics

Vol.20 • No. 4 • October, 1992
Back to Top