The Annals of Probability

Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score

Amir Dembo, Samuel Karlin, and Ofer Zeitouni

Full-text: Open access

Abstract

Consider two independent sequences $X_1,\ldots, X_n$ and $Y_1,\ldots, Y_n$. Suppose that $X_1,\ldots, X_n$ are i.i.d. $\mu_X$ and $Y_1,\ldots, Y_n$ are i.i.d. $\mu_Y$, where $\mu_X$ and $\mu_Y$ are distributions on finite alphabets $\sigma_X$ and $\sigma_Y$, respectively. A score $F: \sigma_X \times \sigma_Y\rightarrow \mathbb{R}$ is assigned to each pair $(X_i, Y_j)$ and the maximal nonaligned segment score is $M_n = \max_{0\leq i, j\leq n - \Delta, \Delta \geq 0} \{\sum^\Delta_{k=1} F(X_{i+k}, Y_{j+k})\}$. The limit distribution of $M_n$ is derived here when $\mu_X$ and $\mu_Y$ are not too far apart and $F$ is slightly constrained.

Article information

Source
Ann. Probab., Volume 22, Number 4 (1994), 2022-2039.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176988493

Digital Object Identifier
doi:10.1214/aop/1176988493

Mathematical Reviews number (MathSciNet)
MR1331214

Zentralblatt MATH identifier
0836.60023

JSTOR
links.jstor.org

Subjects
Primary: 60F10: Large deviations
Secondary: 60G70: Extreme value theory; extremal processes

Keywords
Large deviations Chen-Stein method sequence matching large segmental sums

Citation

Dembo, Amir; Karlin, Samuel; Zeitouni, Ofer. Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score. Ann. Probab. 22 (1994), no. 4, 2022--2039. doi:10.1214/aop/1176988493. https://projecteuclid.org/euclid.aop/1176988493


Export citation