The Annals of Probability

Symmetric Two-Particle Exclusion-Eating Processes

Xijian Liu

Full-text: Open access

Abstract

We consider infinite particle systems on a countable set $S$ with two-particle exclusion-eating motion determined by a symmetric transition function $p(x, y)$. This is, in a certain sense, a mixture of the exclusion process and the voter model. We discuss the dual process of this process and use the dual process to give a description of the set of invariant measures and to prove an ergodic theorem.

Article information

Source
Ann. Probab., Volume 23, Number 3 (1995), 1439-1455.

Dates
First available in Project Euclid: 19 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aop/1176988191

Digital Object Identifier
doi:10.1214/aop/1176988191

Mathematical Reviews number (MathSciNet)
MR1349179

Zentralblatt MATH identifier
0926.60088

JSTOR
links.jstor.org

Subjects
Primary: 60K36

Keywords
Exclusion process voter model coalescing random walk duality ergodic theorem

Citation

Liu, Xijian. Symmetric Two-Particle Exclusion-Eating Processes. Ann. Probab. 23 (1995), no. 3, 1439--1455. doi:10.1214/aop/1176988191. https://projecteuclid.org/euclid.aop/1176988191


Export citation