The Annals of Probability

Free extreme values

Gerard Ben Arous and Dan Virgil Voiculescu

Full-text: Open access


Free probability analogs of the basics of extreme-value theory are obtained, based on Ando’s spectral order. This includes classification of freely max-stable laws and their domains of attraction, using “free extremal convolutions” on the distributions. These laws coincide with the limit laws in the classical peaks-over-threshold approach. A free extremal projection-valued process over a measure-space is constructed, which is related to the free Poisson point process.

Article information

Ann. Probab., Volume 34, Number 5 (2006), 2037-2059.

First available in Project Euclid: 14 November 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L54: Free probability and free operator algebras 60G70: Extreme value theory; extremal processes 46L53: Noncommutative probability and statistics

Free max-stable laws free extremal process generalized Pareto laws Ando spectral order


Arous, Gerard Ben; Voiculescu, Dan Virgil. Free extreme values. Ann. Probab. 34 (2006), no. 5, 2037--2059. doi:10.1214/009117906000000016.

Export citation


  • Ando, T. (1989). Majorization, doubly stochastic matrices and comparison of eigenvalues. Linear Algebra Appl. 18 163--248.
  • Balkema, A. A. and De Haan, L. (1974). Residual lifetime at great age. Ann. Probab. 2 792--804.
  • Bercovici, H. and Pata, V. (with an appendix by P. Biane) (1999). Stable laws and domain of attraction in free probability theory. Ann. of Math. (2) 149 1023--1060.
  • Bercovici, H. and Voiculescu, D. (1992). Levy--Hinčin type theorems for multiplicative and additive free convolution. Pacific J. Math. 153 217--248.
  • Bercovici, H. and Voiculescu, D. (1993). Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42 733--773.
  • Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion). J. Roy. Statist. Soc. Ser. B 52 393--442.
  • Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer, Berlin.
  • Gunawardena, J., ed. (1998). Idempotency. Cambridge Univ. Press.
  • Kadison, R. V. and Ringrose, J. (1986). Fundamentals of the Theory of Operator Algebras. Academic Press, Orlando, FL.
  • Maslov, V. P. and Samborskii, S. N., eds. (1992). Idempotent Analysis. Amer. Math. Soc., Providence, RI.
  • Nica, A. and Speicher, R. (with an appendix by D. Voiculescu) (1996). On the multiplication of free $N$-tuples of noncommutative random variables. Amer. J. Math. 118 799--837.
  • Pickands, J. (1975). Statistical inference using extreme value order statistics. Ann. Statist. 3 119--131.
  • Reiss, R. D. and Thomas, M. (1997). Statistical Analysis of Extremal Values. Birkhäuser, Berlin.
  • Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.
  • Smith, R. L. (1987). Estimating tails of probability distributions. Ann. Statist. 15 1174--1207.
  • Stratila, S. and Zsido, L. (1979). Lectures on von Neumann Algebras. Editura Academiei and Abacus Press.
  • Voiculescu, D. (1998). Lectures on Free Probability Theory. Lectures on Probability Theory and Statistics. Saint Flour XXVIII. Lecture Notes in Math. 1783 279--349. Springer, Berlin.
  • Voiculescu, D., Dykema, K. and Nica, A. (1992). Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI.