The Annals of Probability

A theorem on majorizing measures

Witold Bednorz

Full-text: Open access

Abstract

Let (T,d) be a metric space and φ:ℝ+→ℝ an increasing, convex function with φ(0)=0. We prove that if m is a probability measure m on T which is majorizing with respect to d, φ, that is, $\mathcal{S}:=\sup_{x\in T}\int^{D(T)}_{0}\varphi^{-1}(\frac {1}{m(B(x,\varepsilon ))})\,d\varepsilon \textless\infty$, then

\[\mathbf{E}\sup_{s,t\in T}|X(s)-X(t)|\leq 32\mathcal{S}\]

for each separable stochastic process X(t), tT, which satisfies $\mathbf{E}\varphi(\frac {|X(s)-X(t)|}{d(s,t)})\leq 1$ for all s, tT, st. This is a strengthening of one of the main results from Talagrand [Ann. Probab. 18 (1990) 1–49], and its proof is significantly simpler.

Article information

Source
Ann. Probab., Volume 34, Number 5 (2006), 1771-1781.

Dates
First available in Project Euclid: 14 November 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1163517223

Digital Object Identifier
doi:10.1214/009117906000000241

Mathematical Reviews number (MathSciNet)
MR2271481

Zentralblatt MATH identifier
1113.60040

Subjects
Primary: 60G17: Sample path properties
Secondary: 28A99: None of the above, but in this section

Keywords
Majorizing measures sample boundedness

Citation

Bednorz, Witold. A theorem on majorizing measures. Ann. Probab. 34 (2006), no. 5, 1771--1781. doi:10.1214/009117906000000241. https://projecteuclid.org/euclid.aop/1163517223


Export citation

References

  • Assouad, P. (1969). Le mouvement brownien sur $[0,1]$ applications $\Phi$-sommantes et $(\Phi,\Psi)$-sommantes. Séminaire Laurent Schwartz 1969--1970: Applications radonifiantes 27. Centre de Math., École Polytech., Paris.
  • Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer, Berlin.
  • Talagrand, M. (1990). Sample boundedness of stochastic processes under increment conditions. Ann. Probab. 18 1--49.
  • Talagrand, M. (2001). Majorizing measures without measures. Ann. Probab. 29 411--417.
  • Talagrand, M. (2005). The Generic Chaining. Upper and Lower Bounds for Stochastic Processes. Springer, Berlin.