The Annals of Probability

Uniqueness of maximal entropy measure on essential spanning forests

Scott Sheffield

Full-text: Open access

Abstract

An essential spanning forest of an infinite graph G is a spanning forest of G in which all trees have infinitely many vertices. Let Gn be an increasing sequence of finite connected subgraphs of G for which Gn=G. Pemantle’s arguments imply that the uniform measures on spanning trees of Gn converge weakly to an Aut (G)-invariant measure μG on essential spanning forests of G. We show that if G is a connected, amenable graph and Γ⊂Aut (G) acts quasitransitively on G, then μG is the unique Γ-invariant measure on essential spanning forests of G for which the specific entropy is maximal. This result originated with Burton and Pemantle, who gave a short but incorrect proof in the case Γ≅ℤd. Lyons discovered the error and asked about the more general statement that we prove.

Article information

Source
Ann. Probab., Volume 34, Number 3 (2006), 857-864.

Dates
First available in Project Euclid: 27 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.aop/1151418484

Digital Object Identifier
doi:10.1214/009117905000000765

Mathematical Reviews number (MathSciNet)
MR2243870

Zentralblatt MATH identifier
1106.60012

Subjects
Primary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Keywords
Amenable essential spanning forest ergodic specific entropy

Citation

Sheffield, Scott. Uniqueness of maximal entropy measure on essential spanning forests. Ann. Probab. 34 (2006), no. 3, 857--864. doi:10.1214/009117905000000765. https://projecteuclid.org/euclid.aop/1151418484


Export citation

References

  • Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (2001). Uniform spanning forests. Ann. Probab. 29 1--65.
  • Burton, R. and Keane, M. (1989). Density and uniqueness in percolation. Comm. Math. Phys. 121 501--505.
  • Burton, R. and Pemantle, R. (1993). Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21 1329--1371.
  • Kenyon, R., Okounkov, A. and Sheffield, S. (2006). Dimers and amoebas. Ann. Math. To appear. arXiv:math-ph/0311005.
  • Lindenstrauss, E. (1999). Pointwise theorems for amenable groups. Electron. Res. Announc. Amer. Math. Soc. 5 82--80.
  • Lyons, R. (2005). Asymptotic enumeration of spanning trees. Combin. Probab. Comput. 14 491--522.
  • Ornstein, D. and Weiss, B. (1987). Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math. 48 1--142.
  • Pemantle, R. (1991). Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19 1559--1574.
  • Sheffield, S. (2003). Random surfaces: Large deviations and Gibbs measure classifications. Ph.D. dissertation, Stanford. arxiv:math.PR/0304049.
  • Wilson, D. (1996). Generating random spanning trees more quickly than the cover time. Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing 296--303. ACM, New York.